Spaces:
Runtime error
Runtime error
import os | |
import shutil | |
import torch | |
import gradio as gr | |
from huggingface_hub import HfApi, whoami, ModelCard, model_info | |
from gradio_huggingfacehub_search import HuggingfaceHubSearch | |
from textwrap import dedent | |
from pathlib import Path | |
from tempfile import TemporaryDirectory | |
from huggingface_hub.file_download import repo_folder_name | |
from optimum.intel.utils.constant import _TASK_ALIASES | |
from optimum.exporters import TasksManager | |
from optimum.intel.utils.modeling_utils import _find_files_matching_pattern | |
from optimum.intel import ( | |
OVModelForAudioClassification, | |
OVModelForCausalLM, | |
OVModelForFeatureExtraction, | |
OVModelForImageClassification, | |
OVModelForMaskedLM, | |
OVModelForQuestionAnswering, | |
OVModelForSeq2SeqLM, | |
OVModelForSequenceClassification, | |
OVModelForTokenClassification, | |
OVModelForPix2Struct, | |
OVWeightQuantizationConfig, | |
OVDiffusionPipeline, | |
) | |
from diffusers import ConfigMixin | |
_HEAD_TO_AUTOMODELS = { | |
"feature-extraction": "OVModelForFeatureExtraction", | |
"fill-mask": "OVModelForMaskedLM", | |
"text-generation": "OVModelForCausalLM", | |
"text-classification": "OVModelForSequenceClassification", | |
"token-classification": "OVModelForTokenClassification", | |
"question-answering": "OVModelForQuestionAnswering", | |
"image-classification": "OVModelForImageClassification", | |
"audio-classification": "OVModelForAudioClassification", | |
} | |
def export(model_id: str, private_repo: bool, overwritte: bool, oauth_token: gr.OAuthToken): | |
if oauth_token.token is None: | |
return "You must be logged in to use this space" | |
if not model_id: | |
return f"### Invalid input π Please specify a model name, got {model_id}" | |
try: | |
model_name = model_id.split("/")[-1] | |
username = whoami(oauth_token.token)["name"] | |
new_repo_id = f"{username}/{model_name}-openvino" | |
library_name = TasksManager.infer_library_from_model(model_id, token=oauth_token.token) | |
if library_name == "diffusers": | |
auto_model_class = "OVDiffusionPipeline" | |
elif library_name == "transformers": | |
task = TasksManager.infer_task_from_model(model_id, token=oauth_token.token) | |
if task == "text2text-generation": | |
return "Export of Seq2Seq models is currently disabled" | |
if task not in _HEAD_TO_AUTOMODELS: | |
return f"The task '{task}' is not supported, only {_HEAD_TO_AUTOMODELS.keys()} tasks are supported" | |
auto_model_class = _HEAD_TO_AUTOMODELS[task] | |
else: | |
# TODO: add sentence-transformers and timm support in space | |
return f"Library {library_name} not yet supported" | |
ov_files = _find_files_matching_pattern( | |
model_id, | |
pattern=r"(.*)?openvino(.*)?\_model(.*)?.xml$", | |
use_auth_token=oauth_token.token, | |
) | |
if len(ov_files) > 0: | |
return f"Model {model_id} is already converted, skipping.." | |
api = HfApi(token=oauth_token.token) | |
if api.repo_exists(new_repo_id) and not overwritte: | |
return f"Model {new_repo_id} already exist, please tick the overwritte box to push on an existing repository" | |
with TemporaryDirectory() as d: | |
folder = os.path.join(d, repo_folder_name(repo_id=model_id, repo_type="models")) | |
os.makedirs(folder) | |
try: | |
api.snapshot_download(repo_id=model_id, local_dir=folder, allow_patterns=["*.json"]) | |
ov_model = eval(auto_model_class).from_pretrained(model_id, export=True, cache_dir=folder, token=oauth_token.token) | |
ov_model.save_pretrained(folder) | |
new_repo_url = api.create_repo(repo_id=new_repo_id, exist_ok=True, private=private_repo) | |
new_repo_id = new_repo_url.repo_id | |
print("Repository created successfully!", new_repo_url) | |
folder = Path(folder) | |
for dir_name in ( | |
"", | |
"vae_encoder", | |
"vae_decoder", | |
"text_encoder", | |
"text_encoder_2", | |
"unet", | |
"tokenizer", | |
"tokenizer_2", | |
"scheduler", | |
"feature_extractor", | |
): | |
if not (folder / dir_name).is_dir(): | |
continue | |
for file_path in (folder / dir_name).iterdir(): | |
if file_path.is_file(): | |
try: | |
api.upload_file( | |
path_or_fileobj=file_path, | |
path_in_repo=os.path.join(dir_name, file_path.name), | |
repo_id=new_repo_id, | |
) | |
except Exception as e: | |
return f"Error uploading file {file_path}: {e}" | |
try: | |
card = ModelCard.load(model_id, token=oauth_token.token) | |
except: | |
card = ModelCard("") | |
if card.data.tags is None: | |
card.data.tags = [] | |
card.data.tags.append("openvino") | |
card.data.tags.append("openvino-export") | |
card.data.base_model = model_id | |
pipeline_tag = getattr(model_info(model_id, token=oauth_token.token), "pipeline_tag", None) | |
if pipeline_tag is not None: | |
card.data.pipeline_tag = pipeline_tag | |
card.text = dedent( | |
f""" | |
This model was converted to OpenVINO from [`{model_id}`](https://huggingface.co./{model_id}) using [optimum-intel](https://github.com/huggingface/optimum-intel) | |
via the [export](https://huggingface.co./spaces/echarlaix/openvino-export) space. | |
First make sure you have optimum-intel installed: | |
```bash | |
pip install optimum[openvino] | |
``` | |
To load your model you can do as follows: | |
```python | |
from optimum.intel import {auto_model_class} | |
model_id = "{new_repo_id}" | |
model = {auto_model_class}.from_pretrained(model_id) | |
``` | |
""" | |
) | |
card_path = os.path.join(folder, "README.md") | |
card.save(card_path) | |
api.upload_file( | |
path_or_fileobj=card_path, | |
path_in_repo="README.md", | |
repo_id=new_repo_id, | |
) | |
return f"This model was successfully exported, find it under your repository {new_repo_url}" | |
finally: | |
shutil.rmtree(folder, ignore_errors=True) | |
except Exception as e: | |
return f"### Error: {e}" | |
DESCRIPTION = """ | |
This Space uses [Optimum Intel](https://huggingface.co./docs/optimum/main/en/intel/openvino/export) to automatically export a model from the Hub to the [OpenVINO IR format](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html). | |
After conversion, a repository will be pushed under your namespace with the resulting model. | |
The list of supported architectures can be found in the [documentation](https://huggingface.co./docs/optimum/main/en/intel/openvino/models). | |
""" | |
model_id = HuggingfaceHubSearch( | |
label="Hub Model ID", | |
placeholder="Search for model ID on the hub", | |
search_type="model", | |
) | |
private_repo = gr.Checkbox( | |
value=False, | |
label="Private repository", | |
info="Create a private repository instead of a public one", | |
) | |
overwritte = gr.Checkbox( | |
value=False, | |
label="Overwrite repository content", | |
info="Enable pushing files on existing repositories, potentially overwriting existing files", | |
) | |
interface = gr.Interface( | |
fn=export, | |
inputs=[ | |
model_id, | |
private_repo, | |
overwritte, | |
], | |
outputs=[ | |
gr.Markdown(label="output"), | |
], | |
title="Export your model to OpenVINO", | |
description=DESCRIPTION, | |
api_name=False, | |
) | |
with gr.Blocks() as demo: | |
gr.Markdown("You must be logged in to use this space") | |
gr.LoginButton(min_width=250) | |
interface.render() | |
demo.launch() | |