Spaces:
Runtime error
Runtime error
File size: 8,399 Bytes
d9f713b d1c5472 d9f713b b2aa4ee 15c5870 d1c5472 c2e6a29 d1c5472 097130c d1c5472 b4d8dc7 097130c c2e6a29 b2aa4ee 097130c c2e6a29 b2aa4ee 097130c c2e6a29 097130c 6d3a085 097130c d1c5472 097130c d198aee 097130c 6d3a085 097130c b2aa4ee 097130c d198aee 097130c cb5d8eb 707043a fdbb577 707043a d198aee b4d8dc7 d198aee 707043a cb5d8eb d198aee cb5d8eb d1c5472 d198aee cb5d8eb 097130c d198aee 097130c 6cb28c0 cb5d8eb d1c5472 097130c 6cb28c0 d1c5472 707043a cb5d8eb 6cb28c0 cb5d8eb d9f713b cb5d8eb 6cb28c0 d9f713b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import os
import shutil
import torch
import gradio as gr
from huggingface_hub import HfApi, whoami, ModelCard, model_info
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from textwrap import dedent
from pathlib import Path
from tempfile import TemporaryDirectory
from huggingface_hub.file_download import repo_folder_name
from optimum.intel.utils.constant import _TASK_ALIASES
from optimum.exporters import TasksManager
from optimum.intel.utils.modeling_utils import _find_files_matching_pattern
from optimum.intel import (
OVModelForAudioClassification,
OVModelForCausalLM,
OVModelForFeatureExtraction,
OVModelForImageClassification,
OVModelForMaskedLM,
OVModelForQuestionAnswering,
OVModelForSeq2SeqLM,
OVModelForSequenceClassification,
OVModelForTokenClassification,
OVModelForPix2Struct,
OVWeightQuantizationConfig,
OVDiffusionPipeline,
)
from diffusers import ConfigMixin
_HEAD_TO_AUTOMODELS = {
"feature-extraction": "OVModelForFeatureExtraction",
"fill-mask": "OVModelForMaskedLM",
"text-generation": "OVModelForCausalLM",
"text-classification": "OVModelForSequenceClassification",
"token-classification": "OVModelForTokenClassification",
"question-answering": "OVModelForQuestionAnswering",
"image-classification": "OVModelForImageClassification",
"audio-classification": "OVModelForAudioClassification",
}
def export(model_id: str, private_repo: bool, overwritte: bool, oauth_token: gr.OAuthToken):
if oauth_token.token is None:
return "You must be logged in to use this space"
if not model_id:
return f"### Invalid input π Please specify a model name, got {model_id}"
try:
model_name = model_id.split("/")[-1]
username = whoami(oauth_token.token)["name"]
new_repo_id = f"{username}/{model_name}-openvino"
library_name = TasksManager.infer_library_from_model(model_id, token=oauth_token.token)
if library_name == "diffusers":
auto_model_class = "OVDiffusionPipeline"
elif library_name == "transformers":
task = TasksManager.infer_task_from_model(model_id, token=oauth_token.token)
if task == "text2text-generation":
return "Export of Seq2Seq models is currently disabled"
if task not in _HEAD_TO_AUTOMODELS:
return f"The task '{task}' is not supported, only {_HEAD_TO_AUTOMODELS.keys()} tasks are supported"
auto_model_class = _HEAD_TO_AUTOMODELS[task]
else:
# TODO: add sentence-transformers and timm support in space
return f"Library {library_name} not yet supported"
ov_files = _find_files_matching_pattern(
model_id,
pattern=r"(.*)?openvino(.*)?\_model(.*)?.xml$",
use_auth_token=oauth_token.token,
)
if len(ov_files) > 0:
return f"Model {model_id} is already converted, skipping.."
api = HfApi(token=oauth_token.token)
if api.repo_exists(new_repo_id) and not overwritte:
return f"Model {new_repo_id} already exist, please tick the overwritte box to push on an existing repository"
with TemporaryDirectory() as d:
folder = os.path.join(d, repo_folder_name(repo_id=model_id, repo_type="models"))
os.makedirs(folder)
try:
api.snapshot_download(repo_id=model_id, local_dir=folder, allow_patterns=["*.json"])
ov_model = eval(auto_model_class).from_pretrained(model_id, export=True, cache_dir=folder, token=oauth_token.token)
ov_model.save_pretrained(folder)
new_repo_url = api.create_repo(repo_id=new_repo_id, exist_ok=True, private=private_repo)
new_repo_id = new_repo_url.repo_id
print("Repository created successfully!", new_repo_url)
folder = Path(folder)
for dir_name in (
"",
"vae_encoder",
"vae_decoder",
"text_encoder",
"text_encoder_2",
"unet",
"tokenizer",
"tokenizer_2",
"scheduler",
"feature_extractor",
):
if not (folder / dir_name).is_dir():
continue
for file_path in (folder / dir_name).iterdir():
if file_path.is_file():
try:
api.upload_file(
path_or_fileobj=file_path,
path_in_repo=os.path.join(dir_name, file_path.name),
repo_id=new_repo_id,
)
except Exception as e:
return f"Error uploading file {file_path}: {e}"
try:
card = ModelCard.load(model_id, token=oauth_token.token)
except:
card = ModelCard("")
if card.data.tags is None:
card.data.tags = []
card.data.tags.append("openvino")
card.data.tags.append("openvino-export")
card.data.base_model = model_id
pipeline_tag = getattr(model_info(model_id, token=oauth_token.token), "pipeline_tag", None)
if pipeline_tag is not None:
card.data.pipeline_tag = pipeline_tag
card.text = dedent(
f"""
This model was converted to OpenVINO from [`{model_id}`](https://huggingface.co./{model_id}) using [optimum-intel](https://github.com/huggingface/optimum-intel)
via the [export](https://huggingface.co./spaces/echarlaix/openvino-export) space.
First make sure you have optimum-intel installed:
```bash
pip install optimum[openvino]
```
To load your model you can do as follows:
```python
from optimum.intel import {auto_model_class}
model_id = "{new_repo_id}"
model = {auto_model_class}.from_pretrained(model_id)
```
"""
)
card_path = os.path.join(folder, "README.md")
card.save(card_path)
api.upload_file(
path_or_fileobj=card_path,
path_in_repo="README.md",
repo_id=new_repo_id,
)
return f"This model was successfully exported, find it under your repository {new_repo_url}"
finally:
shutil.rmtree(folder, ignore_errors=True)
except Exception as e:
return f"### Error: {e}"
DESCRIPTION = """
This Space uses [Optimum Intel](https://huggingface.co./docs/optimum/main/en/intel/openvino/export) to automatically export a model from the Hub to the [OpenVINO IR format](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html).
After conversion, a repository will be pushed under your namespace with the resulting model.
The list of supported architectures can be found in the [documentation](https://huggingface.co./docs/optimum/main/en/intel/openvino/models).
"""
model_id = HuggingfaceHubSearch(
label="Hub Model ID",
placeholder="Search for model ID on the hub",
search_type="model",
)
private_repo = gr.Checkbox(
value=False,
label="Private repository",
info="Create a private repository instead of a public one",
)
overwritte = gr.Checkbox(
value=False,
label="Overwrite repository content",
info="Enable pushing files on existing repositories, potentially overwriting existing files",
)
interface = gr.Interface(
fn=export,
inputs=[
model_id,
private_repo,
overwritte,
],
outputs=[
gr.Markdown(label="output"),
],
title="Export your model to OpenVINO",
description=DESCRIPTION,
api_name=False,
)
with gr.Blocks() as demo:
gr.Markdown("You must be logged in to use this space")
gr.LoginButton(min_width=250)
interface.render()
demo.launch()
|