Spaces:
Runtime error
Runtime error
File size: 5,498 Bytes
b059e33 7cfb8be 080f6e6 b059e33 509b38e 8849d6d b059e33 2f37c1e b059e33 f58cafb b059e33 2f37c1e b059e33 2f37c1e b059e33 2f37c1e b059e33 b23a511 2f37c1e b059e33 bafae09 2f37c1e bafae09 b059e33 2f37c1e b059e33 2f37c1e b059e33 03b3f8d b059e33 2f37c1e b059e33 fe1c53b 2f37c1e b059e33 3576575 b121d4e 2f37c1e 698782a 2f37c1e 3576575 2f37c1e 9b0db10 b059e33 4c8eb7e 8849d6d 3576575 8a84f1b 2f37c1e fe1c53b 2f37c1e bfd4996 4c8eb7e b059e33 4c8eb7e b059e33 52fee21 25bda10 b059e33 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
import tensorflow as tf
import numpy as np
from tensorflow import keras
from keras.layers import Input, Lambda, Dense, Flatten, Rescaling
from keras.models import Model
import PIL
from PIL import Image
import gradio as gr
import matplotlib.cm as cm
base_model = keras.applications.Xception(
# weights = "../input/xception/xception_weights_tf_dim_ordering_tf_kernels_notop.h5",
input_shape = (160,160,3),
include_top = False,)
base_model.trainable = False
def img_pros(img):
img = tf.keras.preprocessing.image.img_to_array(img)
img = tf.image.resize(img, [160,160])
img = tf.expand_dims(img, axis = 0)
return img
#function for creating model
#returns model, its inputs, Xception's last conv output, the whole model's outputs
def create_model_mod(classes, activation):
inputs = keras.Input(shape = (160,160,3))
#normalizing pixel values
r = Rescaling(scale = 1/127.5, offset = -1)(inputs)
x = base_model(r, training = False)
gap = keras.layers.GlobalAveragePooling2D()(x)
outputs = keras.layers.Dense(classes ,activation = activation)(gap)
model = keras.Model(inputs, outputs)
if activation == "linear":
loss_s = keras.losses.BinaryCrossentropy(from_logits = True)
else:
loss_s = keras.losses.BinaryCrossentropy()
model.compile(
loss = loss_s,
optimizer = keras.optimizers.Adam(0.001),
metrics = ["accuracy"]
)
return model, inputs, x, outputs
#function that creates a gradcam model and returns it
def create_grad_model(weights, classes, activation):
model_mod, input, x, output = create_model_mod(classes, activation)
#lodaing weights of already trained model
model_mod.load_weights(weights)
grad_model = Model(input, [x, output])
return grad_model
#create heatmaps of the given images
#returns the heatmaps and the raw score of predicted class of each image
def create_heatmap(model, imgs, class_index):
model.layers[-1].activation = None
#predicting the images and getting the conv outputs and predictions from the gradcam model
with tf.GradientTape() as tape:
maps, preds = model(imgs);
# class_channel = tf.expand_dims(preds[:,class_index],axis = 1)
class_channel = preds[:, class_index]
#computing gradients of predictions w.r.t the feature maps
if class_index == -1:
grads = tape.gradient(preds, maps)
else:
grads = tape.gradient(class_channel, maps)
# global average pooling of each feature map
gap_grads = tf.reduce_mean(grads, axis=(0, 1, 2))
#multiplying each pooled value with its correponding feature map
# maps = maps[0]
heatmap = maps @ gap_grads[..., tf.newaxis]
#removing the extra dimension of value 1
heatmap = tf.squeeze(heatmap)
#applying relu activation
heatmap = tf.keras.activations.relu(heatmap)
return heatmap, preds.numpy()
#superimpose function buth for a single input image
def superimpose_single(heatmap, img, alpha = 0.4):
heatmap = np.uint8(255 * heatmap)
# Use jet colormap to colorize heatmap
jet = cm.get_cmap("jet")
# Use RGB values of the colormap
jet_colors = jet(np.arange(256))[:, :3]
jet_heatmap = jet_colors[heatmap]
# Create an image with RGB colorized heatmap
jet_heatmap = keras.utils.array_to_img(jet_heatmap)
jet_heatmap = jet_heatmap.resize((160,160))
jet_heatmap = keras.utils.img_to_array(jet_heatmap)
# Superimpose the heatmap on original image
superimposed_img = jet_heatmap * alpha + img
# superimposed_img = keras.utils.array_to_img(superimposed_img)
return superimposed_img
#for generating single gradcam image
def gen_grad_img_single(grad_model, img, class_index, alpha = 0.4):
heatmaps, y_pred = create_heatmap(grad_model, img, class_index)
# for i in range(len(y_pred)):
# if y_pred[i] > 0.5: y_pred[i] = 1
# else: y_pred[i] = 0
img = superimpose_single(heatmaps, img[0])
return np.array(img).astype('uint8'), y_pred
def gen_grad_both(grad_model, img):
img_c, y_pred_c = gen_grad_img_single(grad_model, img, 0)
img_d, y_pred_d = gen_grad_img_single(grad_model, img, 1)
y_pred_c = np.around(y_pred_c,3)
y_pred_d = np.around(y_pred_d,3)
# show_imgs([img_c, img_d], [y_true, y_true], [size[0], size[1]], cols, [y_pred_c, y_pred_d], font_size = font_size)
infer = ""
if y_pred_c[0][0] > y_pred_c[0][1]: infer = "cat"
else: infer = "dog"
return img_c, img_d, y_pred_c, infer
weights = "weights_nm.h5"
def get_grad(img):
img = img_pros(img)
grad_model = create_grad_model(weights, 2, "softmax")
grad_img_c, grad_img_d, y_pred, infer = gen_grad_both(grad_model, img)
# pred_class = ""
# if y_pred[0] > 0.5: pred_class = "cat"
# else: pred_class = "dog"
text = "Raw Score: " + str(y_pred[0]) + "\nClassification: " + infer
return grad_img_c, grad_img_d, text
demo = gr.Interface(
fn = get_grad,
inputs = gr.Image(type = "pil", shape = (224,224)),
outputs = [gr.Image(type = "numpy", width = 320, height = 320, label = "Grad_CAM w.r.t cat"), gr.Image(type = "numpy", width = 320, height = 320, label = "Grad_CAM w.r.t dog"), gr.Textbox(label = 'Prediction', info = '[P of cat, P of dog]')],
description = "Visual Explanations from Deep Networks",
title = "Gradient-Weighted Class Activation Mapping (Grad-CAM)"
)
demo.launch()
|