Spaces:
Runtime error
Runtime error
Commit
·
2f37c1e
1
Parent(s):
03b3f8d
Update app.py
Browse files
app.py
CHANGED
@@ -24,30 +24,46 @@ def img_pros(img):
|
|
24 |
|
25 |
#function for creating model
|
26 |
#returns model, its inputs, Xception's last conv output, the whole model's outputs
|
27 |
-
def create_model_mod():
|
28 |
inputs = keras.Input(shape = (160,160,3))
|
29 |
#normalizing pixel values
|
30 |
r = Rescaling(scale = 1./255)(inputs)
|
31 |
x = base_model(r, training = False)
|
32 |
gap = keras.layers.GlobalAveragePooling2D()(x)
|
33 |
-
outputs = keras.layers.Dense(
|
34 |
model = keras.Model(inputs, outputs)
|
35 |
|
|
|
|
|
|
|
|
|
|
|
36 |
model.compile(
|
37 |
-
loss =
|
38 |
optimizer = keras.optimizers.Adam(0.001),
|
39 |
metrics = ["accuracy"]
|
40 |
)
|
41 |
|
42 |
return model, inputs, x, outputs
|
43 |
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
46 |
with tf.GradientTape() as tape:
|
47 |
-
|
|
|
|
|
|
|
48 |
|
49 |
#computing gradients of predictions w.r.t the feature maps
|
50 |
-
|
|
|
|
|
|
|
51 |
|
52 |
# global average pooling of each feature map
|
53 |
gap_grads = tf.reduce_mean(grads, axis=(0, 1, 2))
|
@@ -64,6 +80,8 @@ def create_heatmap(model, imgs):
|
|
64 |
|
65 |
return heatmap, preds.numpy()
|
66 |
|
|
|
|
|
67 |
def superimpose_single(heatmap, img, alpha = 0.4):
|
68 |
heatmap = np.uint8(255 * heatmap)
|
69 |
|
@@ -85,37 +103,47 @@ def superimpose_single(heatmap, img, alpha = 0.4):
|
|
85 |
|
86 |
return superimposed_img
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
grad_model = Model(input, [x, output])
|
92 |
-
heatmaps, y_pred = create_heatmap(grad_model, img)
|
93 |
|
94 |
# for i in range(len(y_pred)):
|
95 |
-
#
|
96 |
-
#
|
97 |
|
98 |
img = superimpose_single(heatmaps, img[0])
|
99 |
return np.array(img).astype('uint8'), y_pred
|
100 |
|
101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
weights = "weights.h5"
|
103 |
-
# img, y_pred = gen_grad_img_single(weights, img)
|
104 |
|
105 |
def get_grad(img):
|
106 |
img = img_pros(img)
|
107 |
-
|
108 |
-
pred_class = ""
|
109 |
-
if y_pred[0] > 0.5: pred_class = "cat"
|
110 |
-
else: pred_class = "dog"
|
111 |
|
112 |
-
text = "Raw Score: " + str(y_pred[0]) + "\nClassification: " +
|
113 |
-
return
|
114 |
|
115 |
demo = gr.Interface(
|
116 |
fn = get_grad,
|
117 |
inputs = gr.Image(type = "pil", shape = (224,224)),
|
118 |
-
outputs = [gr.Image(type = "numpy", width = 320, height = 320), gr.Textbox(label = 'Prediction', info = '(threshold: 0.5)')],
|
119 |
description = "Visual Explanations from Deep Networks",
|
120 |
title = "Gradient-Weighted Class Activation Mapping (Grad-CAM)"
|
121 |
)
|
|
|
24 |
|
25 |
#function for creating model
|
26 |
#returns model, its inputs, Xception's last conv output, the whole model's outputs
|
27 |
+
def create_model_mod(classes, activation):
|
28 |
inputs = keras.Input(shape = (160,160,3))
|
29 |
#normalizing pixel values
|
30 |
r = Rescaling(scale = 1./255)(inputs)
|
31 |
x = base_model(r, training = False)
|
32 |
gap = keras.layers.GlobalAveragePooling2D()(x)
|
33 |
+
outputs = keras.layers.Dense(classes ,activation = activation)(gap)
|
34 |
model = keras.Model(inputs, outputs)
|
35 |
|
36 |
+
if activation == "linear":
|
37 |
+
loss_s = keras.losses.BinaryCrossentropy(from_logits = True)
|
38 |
+
else:
|
39 |
+
loss_s = keras.losses.BinaryCrossentropy()
|
40 |
+
|
41 |
model.compile(
|
42 |
+
loss = loss_s,
|
43 |
optimizer = keras.optimizers.Adam(0.001),
|
44 |
metrics = ["accuracy"]
|
45 |
)
|
46 |
|
47 |
return model, inputs, x, outputs
|
48 |
|
49 |
+
|
50 |
+
#create heatmaps of the given images
|
51 |
+
#returns the heatmaps and the raw score of predicted class of each image
|
52 |
+
def create_heatmap(model, imgs, class_index):
|
53 |
+
model.layers[-1].activation = None
|
54 |
+
|
55 |
+
#predicting the images and getting the conv outputs and predictions from the gradcam model
|
56 |
with tf.GradientTape() as tape:
|
57 |
+
maps, preds = model(imgs);
|
58 |
+
|
59 |
+
# class_channel = tf.expand_dims(preds[:,class_index],axis = 1)
|
60 |
+
class_channel = preds[:, class_index]
|
61 |
|
62 |
#computing gradients of predictions w.r.t the feature maps
|
63 |
+
if class_index == -1:
|
64 |
+
grads = tape.gradient(preds, maps)
|
65 |
+
else:
|
66 |
+
grads = tape.gradient(class_channel, maps)
|
67 |
|
68 |
# global average pooling of each feature map
|
69 |
gap_grads = tf.reduce_mean(grads, axis=(0, 1, 2))
|
|
|
80 |
|
81 |
return heatmap, preds.numpy()
|
82 |
|
83 |
+
|
84 |
+
#superimpose function buth for a single input image
|
85 |
def superimpose_single(heatmap, img, alpha = 0.4):
|
86 |
heatmap = np.uint8(255 * heatmap)
|
87 |
|
|
|
103 |
|
104 |
return superimposed_img
|
105 |
|
106 |
+
#for generating single gradcam image
|
107 |
+
def gen_grad_img_single(grad_model, img, class_index, alpha = 0.4):
|
108 |
+
heatmaps, y_pred = create_heatmap(grad_model, img, class_index)
|
|
|
|
|
109 |
|
110 |
# for i in range(len(y_pred)):
|
111 |
+
# if y_pred[i] > 0.5: y_pred[i] = 1
|
112 |
+
# else: y_pred[i] = 0
|
113 |
|
114 |
img = superimpose_single(heatmaps, img[0])
|
115 |
return np.array(img).astype('uint8'), y_pred
|
116 |
|
117 |
|
118 |
+
def gen_grad_both(grad_model, imgs, y_true, size, cols, font_size):
|
119 |
+
img_c, y_pred_c = gen_grad_img_single(grad_model, imgs, 0)
|
120 |
+
img_d, y_pred_d = gen_grad_img_single(grad_model, imgs, 1)
|
121 |
+
y_pred_c = np.around(y_pred_c,3)
|
122 |
+
y_pred_d = np.around(y_pred_d,3)
|
123 |
+
# show_imgs([img_c, img_d], [y_true, y_true], [size[0], size[1]], cols, [y_pred_c, y_pred_d], font_size = font_size)
|
124 |
+
|
125 |
+
infer = ""
|
126 |
+
if y_pred_c[0] > y_pred_c[1]: infer = "cat"
|
127 |
+
else: infer = "dog"
|
128 |
+
|
129 |
+
return [img_c, img_d], y_pred_c, infer
|
130 |
+
|
131 |
weights = "weights.h5"
|
|
|
132 |
|
133 |
def get_grad(img):
|
134 |
img = img_pros(img)
|
135 |
+
grad_imgs, y_pred, infer = gen_grad_img_single(weights, img)
|
136 |
+
# pred_class = ""
|
137 |
+
# if y_pred[0] > 0.5: pred_class = "cat"
|
138 |
+
# else: pred_class = "dog"
|
139 |
|
140 |
+
text = "Raw Score: " + str(y_pred[0]) + "\nClassification: " + infer
|
141 |
+
return grad_imgs, text
|
142 |
|
143 |
demo = gr.Interface(
|
144 |
fn = get_grad,
|
145 |
inputs = gr.Image(type = "pil", shape = (224,224)),
|
146 |
+
outputs = [gr.Image(type = "numpy", width = 320, height = 320), gr.Image(type = "numpy", width = 320, height = 320), gr.Textbox(label = 'Prediction', info = '(threshold: 0.5)')],
|
147 |
description = "Visual Explanations from Deep Networks",
|
148 |
title = "Gradient-Weighted Class Activation Mapping (Grad-CAM)"
|
149 |
)
|