Spaces:
Paused
Paused
import os | |
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
from einops import rearrange | |
from .modeling_lpips import LPIPS | |
from .modeling_discriminator import NLayerDiscriminator, NLayerDiscriminator3D, weights_init | |
from IPython import embed | |
class AdaptiveLossWeight: | |
def __init__(self, timestep_range=[0, 1], buckets=300, weight_range=[1e-7, 1e7]): | |
self.bucket_ranges = torch.linspace(timestep_range[0], timestep_range[1], buckets-1) | |
self.bucket_losses = torch.ones(buckets) | |
self.weight_range = weight_range | |
def weight(self, timestep): | |
indices = torch.searchsorted(self.bucket_ranges.to(timestep.device), timestep) | |
return (1/self.bucket_losses.to(timestep.device)[indices]).clamp(*self.weight_range) | |
def update_buckets(self, timestep, loss, beta=0.99): | |
indices = torch.searchsorted(self.bucket_ranges.to(timestep.device), timestep).cpu() | |
self.bucket_losses[indices] = self.bucket_losses[indices]*beta + loss.detach().cpu() * (1-beta) | |
def hinge_d_loss(logits_real, logits_fake): | |
loss_real = torch.mean(F.relu(1.0 - logits_real)) | |
loss_fake = torch.mean(F.relu(1.0 + logits_fake)) | |
d_loss = 0.5 * (loss_real + loss_fake) | |
return d_loss | |
def vanilla_d_loss(logits_real, logits_fake): | |
d_loss = 0.5 * ( | |
torch.mean(torch.nn.functional.softplus(-logits_real)) | |
+ torch.mean(torch.nn.functional.softplus(logits_fake)) | |
) | |
return d_loss | |
def adopt_weight(weight, global_step, threshold=0, value=0.0): | |
if global_step < threshold: | |
weight = value | |
return weight | |
class LPIPSWithDiscriminator(nn.Module): | |
def __init__( | |
self, | |
disc_start, | |
logvar_init=0.0, | |
kl_weight=1.0, | |
pixelloss_weight=1.0, | |
perceptual_weight=1.0, | |
# --- Discriminator Loss --- | |
disc_num_layers=4, | |
disc_in_channels=3, | |
disc_factor=1.0, | |
disc_weight=0.5, | |
disc_loss="hinge", | |
add_discriminator=True, | |
using_3d_discriminator=False, | |
): | |
super().__init__() | |
assert disc_loss in ["hinge", "vanilla"] | |
self.kl_weight = kl_weight | |
self.pixel_weight = pixelloss_weight | |
self.perceptual_loss = LPIPS().eval() | |
self.perceptual_weight = perceptual_weight | |
self.logvar = nn.Parameter(torch.ones(size=()) * logvar_init) | |
if add_discriminator: | |
disc_cls = NLayerDiscriminator3D if using_3d_discriminator else NLayerDiscriminator | |
self.discriminator = disc_cls( | |
input_nc=disc_in_channels, n_layers=disc_num_layers, | |
).apply(weights_init) | |
else: | |
self.discriminator = None | |
self.discriminator_iter_start = disc_start | |
self.disc_loss = hinge_d_loss if disc_loss == "hinge" else vanilla_d_loss | |
self.disc_factor = disc_factor | |
self.discriminator_weight = disc_weight | |
self.using_3d_discriminator = using_3d_discriminator | |
def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None): | |
if last_layer is not None: | |
nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0] | |
g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0] | |
else: | |
nll_grads = torch.autograd.grad( | |
nll_loss, self.last_layer[0], retain_graph=True | |
)[0] | |
g_grads = torch.autograd.grad( | |
g_loss, self.last_layer[0], retain_graph=True | |
)[0] | |
d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4) | |
d_weight = torch.clamp(d_weight, 0.0, 1e4).detach() | |
d_weight = d_weight * self.discriminator_weight | |
return d_weight | |
def forward( | |
self, | |
inputs, | |
reconstructions, | |
posteriors, | |
optimizer_idx, | |
global_step, | |
split="train", | |
last_layer=None, | |
): | |
t = reconstructions.shape[2] | |
inputs = rearrange(inputs, "b c t h w -> (b t) c h w").contiguous() | |
reconstructions = rearrange(reconstructions, "b c t h w -> (b t) c h w").contiguous() | |
if optimizer_idx == 0: | |
# rec_loss = torch.mean(torch.abs(inputs - reconstructions), dim=(1,2,3), keepdim=True) | |
rec_loss = torch.mean(F.mse_loss(inputs, reconstructions, reduction='none'), dim=(1,2,3), keepdim=True) | |
if self.perceptual_weight > 0: | |
p_loss = self.perceptual_loss(inputs, reconstructions) | |
nll_loss = self.pixel_weight * rec_loss + self.perceptual_weight * p_loss | |
nll_loss = nll_loss / torch.exp(self.logvar) + self.logvar | |
weighted_nll_loss = nll_loss | |
weighted_nll_loss = torch.sum(weighted_nll_loss) / weighted_nll_loss.shape[0] | |
nll_loss = torch.sum(nll_loss) / nll_loss.shape[0] | |
kl_loss = posteriors.kl() | |
kl_loss = torch.mean(kl_loss) | |
disc_factor = adopt_weight( | |
self.disc_factor, global_step, threshold=self.discriminator_iter_start | |
) | |
if disc_factor > 0.0: | |
if self.using_3d_discriminator: | |
reconstructions = rearrange(reconstructions, '(b t) c h w -> b c t h w', t=t) | |
logits_fake = self.discriminator(reconstructions.contiguous()) | |
g_loss = -torch.mean(logits_fake) | |
try: | |
d_weight = self.calculate_adaptive_weight( | |
nll_loss, g_loss, last_layer=last_layer | |
) | |
except RuntimeError: | |
assert not self.training | |
d_weight = torch.tensor(0.0) | |
else: | |
d_weight = torch.tensor(0.0) | |
g_loss = torch.tensor(0.0) | |
loss = ( | |
weighted_nll_loss | |
+ self.kl_weight * kl_loss | |
+ d_weight * disc_factor * g_loss | |
) | |
log = { | |
"{}/total_loss".format(split): loss.clone().detach().mean(), | |
"{}/logvar".format(split): self.logvar.detach(), | |
"{}/kl_loss".format(split): kl_loss.detach().mean(), | |
"{}/nll_loss".format(split): nll_loss.detach().mean(), | |
"{}/rec_loss".format(split): rec_loss.detach().mean(), | |
"{}/perception_loss".format(split): p_loss.detach().mean(), | |
"{}/d_weight".format(split): d_weight.detach(), | |
"{}/disc_factor".format(split): torch.tensor(disc_factor), | |
"{}/g_loss".format(split): g_loss.detach().mean(), | |
} | |
return loss, log | |
if optimizer_idx == 1: | |
if self.using_3d_discriminator: | |
inputs = rearrange(inputs, '(b t) c h w -> b c t h w', t=t) | |
reconstructions = rearrange(reconstructions, '(b t) c h w -> b c t h w', t=t) | |
logits_real = self.discriminator(inputs.contiguous().detach()) | |
logits_fake = self.discriminator(reconstructions.contiguous().detach()) | |
disc_factor = adopt_weight( | |
self.disc_factor, global_step, threshold=self.discriminator_iter_start | |
) | |
d_loss = disc_factor * self.disc_loss(logits_real, logits_fake) | |
log = { | |
"{}/disc_loss".format(split): d_loss.clone().detach().mean(), | |
"{}/logits_real".format(split): logits_real.detach().mean(), | |
"{}/logits_fake".format(split): logits_fake.detach().mean(), | |
} | |
return d_loss, log |