Spaces:
Paused
Paused
File size: 7,598 Bytes
f0533a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
import os
import torch
from torch import nn
import torch.nn.functional as F
from einops import rearrange
from .modeling_lpips import LPIPS
from .modeling_discriminator import NLayerDiscriminator, NLayerDiscriminator3D, weights_init
from IPython import embed
class AdaptiveLossWeight:
def __init__(self, timestep_range=[0, 1], buckets=300, weight_range=[1e-7, 1e7]):
self.bucket_ranges = torch.linspace(timestep_range[0], timestep_range[1], buckets-1)
self.bucket_losses = torch.ones(buckets)
self.weight_range = weight_range
def weight(self, timestep):
indices = torch.searchsorted(self.bucket_ranges.to(timestep.device), timestep)
return (1/self.bucket_losses.to(timestep.device)[indices]).clamp(*self.weight_range)
def update_buckets(self, timestep, loss, beta=0.99):
indices = torch.searchsorted(self.bucket_ranges.to(timestep.device), timestep).cpu()
self.bucket_losses[indices] = self.bucket_losses[indices]*beta + loss.detach().cpu() * (1-beta)
def hinge_d_loss(logits_real, logits_fake):
loss_real = torch.mean(F.relu(1.0 - logits_real))
loss_fake = torch.mean(F.relu(1.0 + logits_fake))
d_loss = 0.5 * (loss_real + loss_fake)
return d_loss
def vanilla_d_loss(logits_real, logits_fake):
d_loss = 0.5 * (
torch.mean(torch.nn.functional.softplus(-logits_real))
+ torch.mean(torch.nn.functional.softplus(logits_fake))
)
return d_loss
def adopt_weight(weight, global_step, threshold=0, value=0.0):
if global_step < threshold:
weight = value
return weight
class LPIPSWithDiscriminator(nn.Module):
def __init__(
self,
disc_start,
logvar_init=0.0,
kl_weight=1.0,
pixelloss_weight=1.0,
perceptual_weight=1.0,
# --- Discriminator Loss ---
disc_num_layers=4,
disc_in_channels=3,
disc_factor=1.0,
disc_weight=0.5,
disc_loss="hinge",
add_discriminator=True,
using_3d_discriminator=False,
):
super().__init__()
assert disc_loss in ["hinge", "vanilla"]
self.kl_weight = kl_weight
self.pixel_weight = pixelloss_weight
self.perceptual_loss = LPIPS().eval()
self.perceptual_weight = perceptual_weight
self.logvar = nn.Parameter(torch.ones(size=()) * logvar_init)
if add_discriminator:
disc_cls = NLayerDiscriminator3D if using_3d_discriminator else NLayerDiscriminator
self.discriminator = disc_cls(
input_nc=disc_in_channels, n_layers=disc_num_layers,
).apply(weights_init)
else:
self.discriminator = None
self.discriminator_iter_start = disc_start
self.disc_loss = hinge_d_loss if disc_loss == "hinge" else vanilla_d_loss
self.disc_factor = disc_factor
self.discriminator_weight = disc_weight
self.using_3d_discriminator = using_3d_discriminator
def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None):
if last_layer is not None:
nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
else:
nll_grads = torch.autograd.grad(
nll_loss, self.last_layer[0], retain_graph=True
)[0]
g_grads = torch.autograd.grad(
g_loss, self.last_layer[0], retain_graph=True
)[0]
d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
d_weight = torch.clamp(d_weight, 0.0, 1e4).detach()
d_weight = d_weight * self.discriminator_weight
return d_weight
def forward(
self,
inputs,
reconstructions,
posteriors,
optimizer_idx,
global_step,
split="train",
last_layer=None,
):
t = reconstructions.shape[2]
inputs = rearrange(inputs, "b c t h w -> (b t) c h w").contiguous()
reconstructions = rearrange(reconstructions, "b c t h w -> (b t) c h w").contiguous()
if optimizer_idx == 0:
# rec_loss = torch.mean(torch.abs(inputs - reconstructions), dim=(1,2,3), keepdim=True)
rec_loss = torch.mean(F.mse_loss(inputs, reconstructions, reduction='none'), dim=(1,2,3), keepdim=True)
if self.perceptual_weight > 0:
p_loss = self.perceptual_loss(inputs, reconstructions)
nll_loss = self.pixel_weight * rec_loss + self.perceptual_weight * p_loss
nll_loss = nll_loss / torch.exp(self.logvar) + self.logvar
weighted_nll_loss = nll_loss
weighted_nll_loss = torch.sum(weighted_nll_loss) / weighted_nll_loss.shape[0]
nll_loss = torch.sum(nll_loss) / nll_loss.shape[0]
kl_loss = posteriors.kl()
kl_loss = torch.mean(kl_loss)
disc_factor = adopt_weight(
self.disc_factor, global_step, threshold=self.discriminator_iter_start
)
if disc_factor > 0.0:
if self.using_3d_discriminator:
reconstructions = rearrange(reconstructions, '(b t) c h w -> b c t h w', t=t)
logits_fake = self.discriminator(reconstructions.contiguous())
g_loss = -torch.mean(logits_fake)
try:
d_weight = self.calculate_adaptive_weight(
nll_loss, g_loss, last_layer=last_layer
)
except RuntimeError:
assert not self.training
d_weight = torch.tensor(0.0)
else:
d_weight = torch.tensor(0.0)
g_loss = torch.tensor(0.0)
loss = (
weighted_nll_loss
+ self.kl_weight * kl_loss
+ d_weight * disc_factor * g_loss
)
log = {
"{}/total_loss".format(split): loss.clone().detach().mean(),
"{}/logvar".format(split): self.logvar.detach(),
"{}/kl_loss".format(split): kl_loss.detach().mean(),
"{}/nll_loss".format(split): nll_loss.detach().mean(),
"{}/rec_loss".format(split): rec_loss.detach().mean(),
"{}/perception_loss".format(split): p_loss.detach().mean(),
"{}/d_weight".format(split): d_weight.detach(),
"{}/disc_factor".format(split): torch.tensor(disc_factor),
"{}/g_loss".format(split): g_loss.detach().mean(),
}
return loss, log
if optimizer_idx == 1:
if self.using_3d_discriminator:
inputs = rearrange(inputs, '(b t) c h w -> b c t h w', t=t)
reconstructions = rearrange(reconstructions, '(b t) c h w -> b c t h w', t=t)
logits_real = self.discriminator(inputs.contiguous().detach())
logits_fake = self.discriminator(reconstructions.contiguous().detach())
disc_factor = adopt_weight(
self.disc_factor, global_step, threshold=self.discriminator_iter_start
)
d_loss = disc_factor * self.disc_loss(logits_real, logits_fake)
log = {
"{}/disc_loss".format(split): d_loss.clone().detach().mean(),
"{}/logits_real".format(split): logits_real.detach().mean(),
"{}/logits_fake".format(split): logits_fake.detach().mean(),
}
return d_loss, log |