Abhaykoul's picture
Upload 85 files
9e7090f verified
raw
history blame
8.34 kB
import requests
import json
import uuid
from typing import Any, Dict, Optional
from ..AIutel import Optimizers
from ..AIutel import Conversation
from ..AIutel import AwesomePrompts, sanitize_stream
from ..AIbase import Provider, AsyncProvider
from webscout import exceptions
class Berlin4h(Provider):
"""
A class to interact with the Berlin4h AI API.
"""
def __init__(
self,
api_token: str = "3bf369cd84339603f8a5361e964f9ebe",
api_endpoint: str = "https://ai.berlin4h.top/api/chat/completions",
model: str = "gpt-3.5-turbo",
temperature: float = 0.9,
presence_penalty: float = 0,
frequency_penalty: float = 0,
max_tokens: int = 4000,
is_conversation: bool = True,
timeout: int = 30,
intro: str = None,
filepath: str = None,
update_file: bool = True,
proxies: dict = {},
history_offset: int = 10250,
act: str = None,
) -> None:
"""
Initializes the Berlin4h API with given parameters.
Args:
api_token (str): The API token for authentication.
api_endpoint (str): The API endpoint to use for requests.
model (str): The AI model to use for text generation.
temperature (float): The temperature parameter for the model.
presence_penalty (float): The presence penalty parameter for the model.
frequency_penalty (float): The frequency penalty parameter for the model.
max_tokens (int): The maximum number of tokens to generate.
is_conversation (bool, optional): Flag for chatting conversationally. Defaults to True.
timeout (int, optional): Http request timeout. Defaults to 30.
intro (str, optional): Conversation introductory prompt. Defaults to None.
filepath (str, optional): Path to file containing conversation history. Defaults to None.
update_file (bool, optional): Add new prompts and responses to the file. Defaults to True.
proxies (dict, optional): Http request proxies. Defaults to {}.
history_offset (int, optional): Limit conversation history to this number of last texts. Defaults to 10250.
act (str|int, optional): Awesome prompt key or index. (Used as intro). Defaults to None.
"""
self.api_token = api_token
self.api_endpoint = api_endpoint
self.model = model
self.temperature = temperature
self.presence_penalty = presence_penalty
self.frequency_penalty = frequency_penalty
self.max_tokens = max_tokens
self.parent_message_id: Optional[str] = None
self.session = requests.Session()
self.is_conversation = is_conversation
self.max_tokens_to_sample = max_tokens
self.stream_chunk_size = 1
self.timeout = timeout
self.last_response = {}
self.headers = {"Content-Type": "application/json", "Token": self.api_token}
self.__available_optimizers = (
method
for method in dir(Optimizers)
if callable(getattr(Optimizers, method)) and not method.startswith("__")
)
self.session.headers.update(self.headers)
Conversation.intro = (
AwesomePrompts().get_act(
act, raise_not_found=True, default=None, case_insensitive=True
)
if act
else intro or Conversation.intro
)
self.conversation = Conversation(
is_conversation, self.max_tokens_to_sample, filepath, update_file
)
self.conversation.history_offset = history_offset
self.session.proxies = proxies
def ask(
self,
prompt: str,
stream: bool = False,
raw: bool = False,
optimizer: str = None,
conversationally: bool = False,
) -> Dict[str, Any]:
"""
Sends a prompt to the Berlin4h AI API and returns the response.
Args:
prompt: The text prompt to generate text from.
stream (bool, optional): Whether to stream the response. Defaults to False.
raw (bool, optional): Whether to return the raw response. Defaults to False.
optimizer (str, optional): The name of the optimizer to use. Defaults to None.
conversationally (bool, optional): Whether to chat conversationally. Defaults to False.
Returns:
The response from the API.
"""
conversation_prompt = self.conversation.gen_complete_prompt(prompt)
if optimizer:
if optimizer in self.__available_optimizers:
conversation_prompt = getattr(Optimizers, optimizer)(
conversation_prompt if conversationally else prompt
)
else:
raise Exception(
f"Optimizer is not one of {self.__available_optimizers}"
)
payload: Dict[str, any] = {
"prompt": conversation_prompt,
"parentMessageId": self.parent_message_id or str(uuid.uuid4()),
"options": {
"model": self.model,
"temperature": self.temperature,
"presence_penalty": self.presence_penalty,
"frequency_penalty": self.frequency_penalty,
"max_tokens": self.max_tokens,
},
}
def for_stream():
response = self.session.post(
self.api_endpoint, json=payload, headers=self.headers, stream=True, timeout=self.timeout
)
if not response.ok:
raise exceptions.FailedToGenerateResponseError(
f"Failed to generate response - ({response.status_code}, {response.reason})"
)
streaming_response = ""
# Collect the entire line before processing
for line in response.iter_lines(decode_unicode=True):
if line:
try:
json_data = json.loads(line)
content = json_data['content']
if ">" in content: break
streaming_response += content
yield content if raw else dict(text=streaming_response) # Yield accumulated response
except:
continue
self.last_response.update(dict(text=streaming_response))
self.conversation.update_chat_history(
prompt, self.get_message(self.last_response)
)
def for_non_stream():
for _ in for_stream():
pass
return self.last_response
return for_stream() if stream else for_non_stream()
def chat(
self,
prompt: str,
stream: bool = False,
optimizer: str = None,
conversationally: bool = False,
) -> str:
"""Generate response `str`
Args:
prompt (str): Prompt to be send.
stream (bool, optional): Flag for streaming response. Defaults to False.
optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
Returns:
str: Response generated
"""
def for_stream():
for response in self.ask(
prompt, True, optimizer=optimizer, conversationally=conversationally
):
yield self.get_message(response)
def for_non_stream():
return self.get_message(
self.ask(
prompt,
False,
optimizer=optimizer,
conversationally=conversationally,
)
)
return for_stream() if stream else for_non_stream()
def get_message(self, response: dict) -> str:
"""Retrieves message only from response
Args:
response (dict): Response generated by `self.ask`
Returns:
str: Message extracted
"""
assert isinstance(response, dict), "Response should be of dict data-type only"
return response["text"]