File size: 8,342 Bytes
9e7090f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import requests
import json
import uuid
from typing import Any, Dict, Optional
from ..AIutel import Optimizers
from ..AIutel import Conversation
from ..AIutel import AwesomePrompts, sanitize_stream
from ..AIbase import Provider, AsyncProvider
from webscout import exceptions

class Berlin4h(Provider):
    """
    A class to interact with the Berlin4h AI API.
    """

    def __init__(
        self,
        api_token: str = "3bf369cd84339603f8a5361e964f9ebe",
        api_endpoint: str = "https://ai.berlin4h.top/api/chat/completions",
        model: str = "gpt-3.5-turbo",
        temperature: float = 0.9,
        presence_penalty: float = 0,
        frequency_penalty: float = 0,
        max_tokens: int = 4000,
        is_conversation: bool = True,
        timeout: int = 30,
        intro: str = None,
        filepath: str = None,
        update_file: bool = True,
        proxies: dict = {},
        history_offset: int = 10250,
        act: str = None,
    ) -> None:
        """
        Initializes the Berlin4h API with given parameters.

        Args:
            api_token (str): The API token for authentication.
            api_endpoint (str): The API endpoint to use for requests.
            model (str): The AI model to use for text generation.
            temperature (float): The temperature parameter for the model.
            presence_penalty (float): The presence penalty parameter for the model.
            frequency_penalty (float): The frequency penalty parameter for the model.
            max_tokens (int): The maximum number of tokens to generate.
            is_conversation (bool, optional): Flag for chatting conversationally. Defaults to True.
            timeout (int, optional): Http request timeout. Defaults to 30.
            intro (str, optional): Conversation introductory prompt. Defaults to None.
            filepath (str, optional): Path to file containing conversation history. Defaults to None.
            update_file (bool, optional): Add new prompts and responses to the file. Defaults to True.
            proxies (dict, optional): Http request proxies. Defaults to {}.
            history_offset (int, optional): Limit conversation history to this number of last texts. Defaults to 10250.
            act (str|int, optional): Awesome prompt key or index. (Used as intro). Defaults to None.
        """
        self.api_token = api_token
        self.api_endpoint = api_endpoint
        self.model = model
        self.temperature = temperature
        self.presence_penalty = presence_penalty
        self.frequency_penalty = frequency_penalty
        self.max_tokens = max_tokens
        self.parent_message_id: Optional[str] = None
        self.session = requests.Session()
        self.is_conversation = is_conversation
        self.max_tokens_to_sample = max_tokens
        self.stream_chunk_size = 1
        self.timeout = timeout
        self.last_response = {}
        self.headers = {"Content-Type": "application/json", "Token": self.api_token}
        self.__available_optimizers = (
            method
            for method in dir(Optimizers)
            if callable(getattr(Optimizers, method)) and not method.startswith("__")
        )
        self.session.headers.update(self.headers)
        Conversation.intro = (
            AwesomePrompts().get_act(
                act, raise_not_found=True, default=None, case_insensitive=True
            )
            if act
            else intro or Conversation.intro
        )
        self.conversation = Conversation(
            is_conversation, self.max_tokens_to_sample, filepath, update_file
        )
        self.conversation.history_offset = history_offset
        self.session.proxies = proxies

    def ask(
        self,
        prompt: str,
        stream: bool = False,
        raw: bool = False,
        optimizer: str = None,
        conversationally: bool = False,
    ) -> Dict[str, Any]:
        """
        Sends a prompt to the Berlin4h AI API and returns the response.

        Args:
            prompt: The text prompt to generate text from.
            stream (bool, optional): Whether to stream the response. Defaults to False.
            raw (bool, optional): Whether to return the raw response. Defaults to False.
            optimizer (str, optional): The name of the optimizer to use. Defaults to None.
            conversationally (bool, optional): Whether to chat conversationally. Defaults to False.

        Returns:
            The response from the API.
        """
        conversation_prompt = self.conversation.gen_complete_prompt(prompt)
        if optimizer:
            if optimizer in self.__available_optimizers:
                conversation_prompt = getattr(Optimizers, optimizer)(
                    conversation_prompt if conversationally else prompt
                )
            else:
                raise Exception(
                    f"Optimizer is not one of {self.__available_optimizers}"
                )

        payload: Dict[str, any] = {
            "prompt": conversation_prompt,
            "parentMessageId": self.parent_message_id or str(uuid.uuid4()),
            "options": {
                "model": self.model,
                "temperature": self.temperature,
                "presence_penalty": self.presence_penalty,
                "frequency_penalty": self.frequency_penalty,
                "max_tokens": self.max_tokens,
            },
        }

        def for_stream():
            response = self.session.post(
                self.api_endpoint, json=payload, headers=self.headers, stream=True, timeout=self.timeout
            )

            if not response.ok:
                raise exceptions.FailedToGenerateResponseError(
                    f"Failed to generate response - ({response.status_code}, {response.reason})"
                )

            streaming_response = ""
            # Collect the entire line before processing
            for line in response.iter_lines(decode_unicode=True): 
                if line:
                    try:
                        json_data = json.loads(line)
                        content = json_data['content']
                        if ">" in content: break
                        streaming_response += content
                        yield content if raw else dict(text=streaming_response)  # Yield accumulated response
                    except:
                        continue
            self.last_response.update(dict(text=streaming_response))
            self.conversation.update_chat_history(
                prompt, self.get_message(self.last_response)
            )

        def for_non_stream():
            for _ in for_stream():
                pass
            return self.last_response

        return for_stream() if stream else for_non_stream()

    def chat(
        self,
        prompt: str,
        stream: bool = False,
        optimizer: str = None,
        conversationally: bool = False,
    ) -> str:
        """Generate response `str`
        Args:
            prompt (str): Prompt to be send.
            stream (bool, optional): Flag for streaming response. Defaults to False.
            optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
            conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
        Returns:
            str: Response generated
        """

        def for_stream():
            for response in self.ask(
                prompt, True, optimizer=optimizer, conversationally=conversationally
            ):
                yield self.get_message(response)

        def for_non_stream():
            return self.get_message(
                self.ask(
                    prompt,
                    False,
                    optimizer=optimizer,
                    conversationally=conversationally,
                )
            )

        return for_stream() if stream else for_non_stream()

    def get_message(self, response: dict) -> str:
        """Retrieves message only from response

        Args:
            response (dict): Response generated by `self.ask`

        Returns:
            str: Message extracted
        """
        assert isinstance(response, dict), "Response should be of dict data-type only"
        return response["text"]