File size: 8,205 Bytes
7062b81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
'''
    This code is partially borrowed from RAFT (https://github.com/princeton-vl/RAFT). 
'''
import torch
import torch.nn as nn
import torch.nn.functional as F

def resize(x, scale_factor):
    return F.interpolate(x, scale_factor=scale_factor, mode="bilinear", align_corners=False)

def bilinear_sampler(img, coords, mask=False):
    """ Wrapper for grid_sample, uses pixel coordinates """
    H, W = img.shape[-2:]
    xgrid, ygrid = coords.split([1,1], dim=-1)
    xgrid = 2*xgrid/(W-1) - 1
    ygrid = 2*ygrid/(H-1) - 1

    grid = torch.cat([xgrid, ygrid], dim=-1)
    img = F.grid_sample(img, grid, align_corners=True)

    if mask:
        mask = (xgrid > -1) & (ygrid > -1) & (xgrid < 1) & (ygrid < 1)
        return img, mask.float()

    return img

def coords_grid(batch, ht, wd, device):
    coords = torch.meshgrid(torch.arange(ht, device=device), 
                            torch.arange(wd, device=device), 
                            indexing='ij')
    coords = torch.stack(coords[::-1], dim=0).float()
    return coords[None].repeat(batch, 1, 1, 1)

class SmallUpdateBlock(nn.Module):
    def __init__(self, cdim, hidden_dim, flow_dim, corr_dim, fc_dim,
                 corr_levels=4, radius=3, scale_factor=None):
        super(SmallUpdateBlock, self).__init__()
        cor_planes = corr_levels * (2 * radius + 1) **2
        self.scale_factor = scale_factor

        self.convc1 = nn.Conv2d(2 * cor_planes, corr_dim, 1, padding=0)
        self.convf1 = nn.Conv2d(4, flow_dim*2, 7, padding=3)
        self.convf2 = nn.Conv2d(flow_dim*2, flow_dim, 3, padding=1)
        self.conv = nn.Conv2d(corr_dim+flow_dim, fc_dim, 3, padding=1)

        self.gru = nn.Sequential(
            nn.Conv2d(fc_dim+4+cdim, hidden_dim, 3, padding=1),
            nn.LeakyReLU(negative_slope=0.1, inplace=True),
            nn.Conv2d(hidden_dim, hidden_dim, 3, padding=1),
        )

        self.feat_head = nn.Sequential(
            nn.Conv2d(hidden_dim, hidden_dim, 3, padding=1),
            nn.LeakyReLU(negative_slope=0.1, inplace=True),
            nn.Conv2d(hidden_dim, cdim, 3, padding=1),
        )

        self.flow_head = nn.Sequential(
            nn.Conv2d(hidden_dim, hidden_dim, 3, padding=1),
            nn.LeakyReLU(negative_slope=0.1, inplace=True),
            nn.Conv2d(hidden_dim, 4, 3, padding=1),
        )

        self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
            
    def forward(self, net, flow, corr):
        net = resize(net, 1 / self.scale_factor
                      ) if self.scale_factor is not None else net
        cor = self.lrelu(self.convc1(corr))
        flo = self.lrelu(self.convf1(flow))
        flo = self.lrelu(self.convf2(flo))
        cor_flo = torch.cat([cor, flo], dim=1)
        inp = self.lrelu(self.conv(cor_flo))
        inp = torch.cat([inp, flow, net], dim=1)

        out = self.gru(inp)
        delta_net = self.feat_head(out)
        delta_flow = self.flow_head(out)
        
        if self.scale_factor is not None:
            delta_net = resize(delta_net, scale_factor=self.scale_factor)
            delta_flow = self.scale_factor * resize(delta_flow, scale_factor=self.scale_factor)
        
        return delta_net, delta_flow

class BasicUpdateBlock(nn.Module):
    def __init__(self, cdim, hidden_dim, flow_dim, corr_dim, corr_dim2, 
                 fc_dim, corr_levels=4, radius=3, scale_factor=None, out_num=1):
        super(BasicUpdateBlock, self).__init__()
        cor_planes = corr_levels * (2 * radius + 1) **2

        self.scale_factor = scale_factor
        self.convc1 = nn.Conv2d(2 * cor_planes, corr_dim, 1, padding=0)
        self.convc2 = nn.Conv2d(corr_dim, corr_dim2, 3, padding=1)
        self.convf1 = nn.Conv2d(4, flow_dim*2, 7, padding=3)
        self.convf2 = nn.Conv2d(flow_dim*2, flow_dim, 3, padding=1)
        self.conv = nn.Conv2d(flow_dim+corr_dim2, fc_dim, 3, padding=1)

        self.gru = nn.Sequential(
            nn.Conv2d(fc_dim+4+cdim, hidden_dim, 3, padding=1),
            nn.LeakyReLU(negative_slope=0.1, inplace=True),
            nn.Conv2d(hidden_dim, hidden_dim, 3, padding=1),
        )

        self.feat_head = nn.Sequential(
            nn.Conv2d(hidden_dim, hidden_dim, 3, padding=1),
            nn.LeakyReLU(negative_slope=0.1, inplace=True),
            nn.Conv2d(hidden_dim, cdim, 3, padding=1),
        )

        self.flow_head = nn.Sequential(
            nn.Conv2d(hidden_dim, hidden_dim, 3, padding=1),
            nn.LeakyReLU(negative_slope=0.1, inplace=True),
            nn.Conv2d(hidden_dim, 4*out_num, 3, padding=1),
        )

        self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
            
    def forward(self, net, flow, corr):
        net = resize(net, 1 / self.scale_factor
                      ) if self.scale_factor is not None else net
        cor = self.lrelu(self.convc1(corr))
        cor = self.lrelu(self.convc2(cor))
        flo = self.lrelu(self.convf1(flow))
        flo = self.lrelu(self.convf2(flo))
        cor_flo = torch.cat([cor, flo], dim=1)
        inp = self.lrelu(self.conv(cor_flo))
        inp = torch.cat([inp, flow, net], dim=1)

        out = self.gru(inp)
        delta_net = self.feat_head(out)
        delta_flow = self.flow_head(out)
        
        if self.scale_factor is not None:
            delta_net = resize(delta_net, scale_factor=self.scale_factor)
            delta_flow = self.scale_factor * resize(delta_flow, scale_factor=self.scale_factor)
        return delta_net, delta_flow

class BidirCorrBlock:
    def __init__(self, fmap1, fmap2, num_levels=4, radius=4):
        self.num_levels = num_levels
        self.radius = radius
        self.corr_pyramid = []
        self.corr_pyramid_T = []

        corr = BidirCorrBlock.corr(fmap1, fmap2)
        batch, h1, w1, dim, h2, w2 = corr.shape
        corr_T = corr.clone().permute(0, 4, 5, 3, 1, 2)

        corr = corr.reshape(batch*h1*w1, dim, h2, w2)
        corr_T = corr_T.reshape(batch*h2*w2, dim, h1, w1)
        
        self.corr_pyramid.append(corr)
        self.corr_pyramid_T.append(corr_T)

        for _ in range(self.num_levels-1):
            corr = F.avg_pool2d(corr, 2, stride=2)
            corr_T = F.avg_pool2d(corr_T, 2, stride=2)
            self.corr_pyramid.append(corr)
            self.corr_pyramid_T.append(corr_T)

    def __call__(self, coords0, coords1):
        r = self.radius
        coords0 = coords0.permute(0, 2, 3, 1)
        coords1 = coords1.permute(0, 2, 3, 1)
        assert coords0.shape == coords1.shape, f"coords0 shape: [{coords0.shape}] is not equal to [{coords1.shape}]"
        batch, h1, w1, _ = coords0.shape

        out_pyramid = []
        out_pyramid_T = []
        for i in range(self.num_levels):
            corr = self.corr_pyramid[i]
            corr_T = self.corr_pyramid_T[i]

            dx = torch.linspace(-r, r, 2*r+1, device=coords0.device)
            dy = torch.linspace(-r, r, 2*r+1, device=coords0.device)
            delta = torch.stack(torch.meshgrid(dy, dx, indexing='ij'), axis=-1)
            delta_lvl = delta.view(1, 2*r+1, 2*r+1, 2)

            centroid_lvl_0 = coords0.reshape(batch*h1*w1, 1, 1, 2) / 2**i
            centroid_lvl_1 = coords1.reshape(batch*h1*w1, 1, 1, 2) / 2**i
            coords_lvl_0 = centroid_lvl_0 + delta_lvl
            coords_lvl_1 = centroid_lvl_1 + delta_lvl

            corr = bilinear_sampler(corr, coords_lvl_0)
            corr_T = bilinear_sampler(corr_T, coords_lvl_1)
            corr = corr.view(batch, h1, w1, -1)
            corr_T = corr_T.view(batch, h1, w1, -1)
            out_pyramid.append(corr)
            out_pyramid_T.append(corr_T)

        out = torch.cat(out_pyramid, dim=-1)
        out_T = torch.cat(out_pyramid_T, dim=-1)
        return out.permute(0, 3, 1, 2).contiguous().float(), out_T.permute(0, 3, 1, 2).contiguous().float()

    @staticmethod
    def corr(fmap1, fmap2):
        batch, dim, ht, wd = fmap1.shape
        fmap1 = fmap1.view(batch, dim, ht*wd)
        fmap2 = fmap2.view(batch, dim, ht*wd) 
        
        corr = torch.matmul(fmap1.transpose(1,2), fmap2)
        corr = corr.view(batch, ht, wd, 1, ht, wd)
        return corr  / torch.sqrt(torch.tensor(dim).float())