zzl
commited on
Commit
·
7062b81
1
Parent(s):
2219b6e
[Release] Demo v1.0
Browse files- app.py +35 -0
- demo_img.py +106 -0
- demo_vid.py +110 -0
- examples/00001808.png +0 -0
- examples/00001810.png +0 -0
- networks/__init__.py +0 -0
- networks/amtg.py +170 -0
- networks/amtl.py +153 -0
- networks/amts.py +152 -0
- networks/blocks/__init__.py +0 -0
- networks/blocks/feat_enc.py +346 -0
- networks/blocks/ifrnet.py +113 -0
- networks/blocks/multi_flow.py +67 -0
- networks/blocks/raft.py +206 -0
- utils.py +229 -0
app.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
from demo_img import demo_img
|
4 |
+
from demo_vid import demo_vid
|
5 |
+
with gr.Blocks(css='style.css') as demo:
|
6 |
+
gr.HTML(
|
7 |
+
"""
|
8 |
+
<div style="text-align: center; max-width: 1200px; margin: 20px auto;">
|
9 |
+
<h1 style="font-weight: 900; font-size: 2rem; margin: 0rem">
|
10 |
+
AMT: All-Pairs Multi-Field Transforms for Efficient Frame Interpolation
|
11 |
+
</h1>
|
12 |
+
<h2 style="font-weight: 450; font-size: 1rem; margin: 0rem">
|
13 |
+
<a href="https://paper99.github.io" style="color:blue;">Zhen Li</a><sup>1*</sup>,
|
14 |
+
<a href="https://github.com/NK-CS-ZZL" style="color:blue;">Zuo-Liang Zhu</a><sup>1*</sup>,
|
15 |
+
<a href="https://github.com/hlh981029" style="color:blue;">Ling-Hao Han</a><sup>1*</sup>,
|
16 |
+
<a href="https://houqb.github.io" style="color:blue;">Qibin Hou</a><sup>1*</sup>,
|
17 |
+
<a href="https://github.com" style="color:blue;">Chun-Le Guo</a><sup>1*</sup>,
|
18 |
+
<a href="https://mmcheng.net" style="color:blue;">Ming-Ming Cheng</a><sup>1*</sup>,
|
19 |
+
</h2>
|
20 |
+
<h2 style="font-weight: 450; font-size: 1rem; margin: 0rem">
|
21 |
+
<sup>1</sup>Nankai University <sup>*</sup> represents the equal contribution and <sup>#</sup> represents the corresponding author.
|
22 |
+
</h2>
|
23 |
+
<h2 style="font-weight: 450; font-size: 1rem; margin: 0rem">
|
24 |
+
[<a href="https://arxiv.org/abs/2303.13439" style="color:blue;">arXiv</a>]
|
25 |
+
[<a href="https://github.com/MCG-NKU/AMT" style="color:blue;">GitHub</a>]
|
26 |
+
</h2>
|
27 |
+
</div>
|
28 |
+
""")
|
29 |
+
|
30 |
+
with gr.Tab('Img2Vid'):
|
31 |
+
demo_img()
|
32 |
+
with gr.Tab('VFI'):
|
33 |
+
demo_vid()
|
34 |
+
|
35 |
+
demo.launch(debug=False)
|
demo_img.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import glob
|
3 |
+
import torch
|
4 |
+
import gradio as gr
|
5 |
+
from huggingface_hub import hf_hub_download
|
6 |
+
|
7 |
+
from networks.amts import Model as AMTS
|
8 |
+
from networks.amtl import Model as AMTL
|
9 |
+
from networks.amtg import Model as AMTG
|
10 |
+
from utils import img2tensor, tensor2img, InputPadder
|
11 |
+
|
12 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
13 |
+
model_dict = {
|
14 |
+
'AMT-S': AMTS, 'AMT-L': AMTL, 'AMT-G': AMTG
|
15 |
+
}
|
16 |
+
|
17 |
+
def img2vid(model_type, img0, img1, frame_ratio, iters):
|
18 |
+
model = model_dict[model_type]()
|
19 |
+
model.to(device)
|
20 |
+
ckpt_path = hf_hub_download(repo_id='lalala125/AMT', filename=f'{model_type.lower()}.pth')
|
21 |
+
print(model_type)
|
22 |
+
ckpt = torch.load(ckpt_path)
|
23 |
+
model.load_state_dict(ckpt['state_dict'])
|
24 |
+
model.eval()
|
25 |
+
img0_t = img2tensor(img0).to(device)
|
26 |
+
img1_t = img2tensor(img1).to(device)
|
27 |
+
padder = InputPadder(img0_t.shape, 16)
|
28 |
+
img0_t, img1_t = padder.pad(img0_t, img1_t)
|
29 |
+
inputs = [img0_t, img1_t]
|
30 |
+
embt = torch.tensor(1/2).float().view(1, 1, 1, 1).to(device)
|
31 |
+
|
32 |
+
for i in range(iters):
|
33 |
+
print(f'Iter {i+1}. input_frames={len(inputs)} output_frames={2*len(inputs)-1}')
|
34 |
+
outputs = [img0_t]
|
35 |
+
for in_0, in_1 in zip(inputs[:-1], inputs[1:]):
|
36 |
+
with torch.no_grad():
|
37 |
+
imgt_pred = model(in_0, in_1, embt, eval=True)['imgt_pred']
|
38 |
+
imgt_pred = padder.unpad(imgt_pred)
|
39 |
+
in_1 = padder.unpad(in_1)
|
40 |
+
outputs += [imgt_pred, in_1]
|
41 |
+
inputs = outputs
|
42 |
+
|
43 |
+
out_path = 'results'
|
44 |
+
size = outputs[0].shape[2:][::-1]
|
45 |
+
writer = cv2.VideoWriter(f'{out_path}/demo.mp4', cv2.VideoWriter_fourcc(*'mp4v'), frame_ratio, size)
|
46 |
+
for i, imgt_pred in enumerate(outputs):
|
47 |
+
imgt_pred = tensor2img(imgt_pred)
|
48 |
+
imgt_pred = cv2.cvtColor(imgt_pred, cv2.COLOR_RGB2BGR)
|
49 |
+
writer.write(imgt_pred)
|
50 |
+
writer.release()
|
51 |
+
return 'results/demo.mp4'
|
52 |
+
|
53 |
+
|
54 |
+
def demo_img():
|
55 |
+
with gr.Blocks() as demo:
|
56 |
+
with gr.Row():
|
57 |
+
gr.Markdown('## Image Demo')
|
58 |
+
with gr.Row():
|
59 |
+
gr.HTML(
|
60 |
+
"""
|
61 |
+
<div style="text-align: left; auto;">
|
62 |
+
<h2 style="font-weight: 450; font-size: 1rem; margin: 0rem">
|
63 |
+
Description: With 2 input images, you can generate a short video from them.
|
64 |
+
</h3>
|
65 |
+
</div>
|
66 |
+
""")
|
67 |
+
|
68 |
+
with gr.Row():
|
69 |
+
with gr.Column():
|
70 |
+
img0 = gr.Image(label='Image0')
|
71 |
+
img1 = gr.Image(label='Image1')
|
72 |
+
with gr.Column():
|
73 |
+
result = gr.Video(label="Generated Video")
|
74 |
+
with gr.Accordion('Advanced options', open=False):
|
75 |
+
ratio = gr.Slider(label='Multiple Ratio',
|
76 |
+
minimum=4,
|
77 |
+
maximum=7,
|
78 |
+
value=6,
|
79 |
+
step=1)
|
80 |
+
frame_ratio = gr.Slider(label='Frame Ratio',
|
81 |
+
minimum=8,
|
82 |
+
maximum=64,
|
83 |
+
value=16,
|
84 |
+
step=1)
|
85 |
+
model_type = gr.Radio(['AMT-S', 'AMT-L', 'AMT-G'],
|
86 |
+
label='Model Select',
|
87 |
+
value='AMT-S')
|
88 |
+
run_button = gr.Button(label='Run')
|
89 |
+
inputs = [
|
90 |
+
model_type,
|
91 |
+
img0,
|
92 |
+
img1,
|
93 |
+
frame_ratio,
|
94 |
+
ratio,
|
95 |
+
]
|
96 |
+
|
97 |
+
gr.Examples(examples=glob.glob("examples/*.png"),
|
98 |
+
inputs=img0,
|
99 |
+
label='Example images (drag them to input windows)',
|
100 |
+
run_on_click=False,
|
101 |
+
)
|
102 |
+
|
103 |
+
run_button.click(fn=img2vid,
|
104 |
+
inputs=inputs,
|
105 |
+
outputs=result,)
|
106 |
+
return demo
|
demo_vid.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import glob
|
3 |
+
import torch
|
4 |
+
import gradio as gr
|
5 |
+
from huggingface_hub import hf_hub_download
|
6 |
+
|
7 |
+
from networks.amts import Model as AMTS
|
8 |
+
from networks.amtl import Model as AMTL
|
9 |
+
from networks.amtg import Model as AMTG
|
10 |
+
from utils import img2tensor, tensor2img, InputPadder
|
11 |
+
|
12 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
13 |
+
model_dict = {
|
14 |
+
'AMT-S': AMTS, 'AMT-L': AMTL, 'AMT-G': AMTG
|
15 |
+
}
|
16 |
+
|
17 |
+
|
18 |
+
def vid2vid(model_type, video, iters):
|
19 |
+
model = model_dict[model_type]()
|
20 |
+
model.to(device)
|
21 |
+
ckpt_path = hf_hub_download(repo_id='lalala125/AMT', filename=f'{model_type.lower()}.pth')
|
22 |
+
print(model_type)
|
23 |
+
ckpt = torch.load(ckpt_path)
|
24 |
+
model.load_state_dict(ckpt['state_dict'])
|
25 |
+
model.eval()
|
26 |
+
vcap = cv2.VideoCapture(video)
|
27 |
+
ori_frame_rate = vcap.get(cv2.CAP_PROP_FPS)
|
28 |
+
inputs = []
|
29 |
+
h = int(vcap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
30 |
+
w = int(vcap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
31 |
+
padder = InputPadder((h, w), 16)
|
32 |
+
while True:
|
33 |
+
ret, frame = vcap.read()
|
34 |
+
if ret is False:
|
35 |
+
break
|
36 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
37 |
+
frame_t = img2tensor(frame).to(device)
|
38 |
+
frame_t = padder.pad(frame_t)
|
39 |
+
inputs.append(frame_t)
|
40 |
+
embt = torch.tensor(1/2).float().view(1, 1, 1, 1).to(device)
|
41 |
+
|
42 |
+
for i in range(iters):
|
43 |
+
print(f'Iter {i+1}. input_frames={len(inputs)} output_frames={2*len(inputs)-1}')
|
44 |
+
outputs = [inputs[0]]
|
45 |
+
for in_0, in_1 in zip(inputs[:-1], inputs[1:]):
|
46 |
+
with torch.no_grad():
|
47 |
+
imgt_pred = model(in_0, in_1, embt, eval=True)['imgt_pred']
|
48 |
+
imgt_pred = padder.unpad(imgt_pred)
|
49 |
+
in_1 = padder.unpad(in_1)
|
50 |
+
outputs += [imgt_pred, in_1]
|
51 |
+
inputs = outputs
|
52 |
+
|
53 |
+
out_path = 'results'
|
54 |
+
size = outputs[0].shape[2:][::-1]
|
55 |
+
writer = cv2.VideoWriter(f'{out_path}/demo_vfi.mp4',
|
56 |
+
cv2.VideoWriter_fourcc(*'mp4v'),
|
57 |
+
ori_frame_rate * 2 ** iters, size)
|
58 |
+
for i, imgt_pred in enumerate(outputs):
|
59 |
+
imgt_pred = tensor2img(imgt_pred)
|
60 |
+
imgt_pred = cv2.cvtColor(imgt_pred, cv2.COLOR_RGB2BGR)
|
61 |
+
writer.write(imgt_pred)
|
62 |
+
writer.release()
|
63 |
+
return 'results/demo_vfi.mp4'
|
64 |
+
|
65 |
+
|
66 |
+
def demo_vid():
|
67 |
+
with gr.Blocks() as demo:
|
68 |
+
with gr.Row():
|
69 |
+
gr.Markdown('## Image Demo')
|
70 |
+
with gr.Row():
|
71 |
+
gr.HTML(
|
72 |
+
"""
|
73 |
+
<div style="text-align: left; auto;">
|
74 |
+
<h2 style="font-weight: 450; font-size: 1rem; margin: 0rem">
|
75 |
+
Description: With 2 input images, you can generate a short video from them.
|
76 |
+
</h3>
|
77 |
+
</div>
|
78 |
+
""")
|
79 |
+
|
80 |
+
with gr.Row():
|
81 |
+
with gr.Column():
|
82 |
+
video = gr.Video(label='Video Input')
|
83 |
+
with gr.Column():
|
84 |
+
result = gr.Video(label="Generated Video")
|
85 |
+
with gr.Accordion('Advanced options', open=False):
|
86 |
+
ratio = gr.Slider(label='Multiple Ratio',
|
87 |
+
minimum=1,
|
88 |
+
maximum=4,
|
89 |
+
value=2,
|
90 |
+
step=1)
|
91 |
+
model_type = gr.Radio(['AMT-S', 'AMT-L', 'AMT-G'],
|
92 |
+
label='Model Select',
|
93 |
+
value='AMT-S')
|
94 |
+
run_button = gr.Button(label='Run')
|
95 |
+
inputs = [
|
96 |
+
model_type,
|
97 |
+
video,
|
98 |
+
ratio,
|
99 |
+
]
|
100 |
+
|
101 |
+
gr.Examples(examples=glob.glob("examples/*.mp4"),
|
102 |
+
inputs=video,
|
103 |
+
label='Example images (drag them to input windows)',
|
104 |
+
run_on_click=False,
|
105 |
+
)
|
106 |
+
|
107 |
+
run_button.click(fn=vid2vid,
|
108 |
+
inputs=inputs,
|
109 |
+
outputs=result,)
|
110 |
+
return demo
|
examples/00001808.png
ADDED
examples/00001810.png
ADDED
networks/__init__.py
ADDED
File without changes
|
networks/amtg.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from networks.blocks.raft import (
|
5 |
+
coords_grid,
|
6 |
+
BasicUpdateBlock, BidirCorrBlock
|
7 |
+
)
|
8 |
+
from networks.blocks.feat_enc import (
|
9 |
+
LargeEncoder
|
10 |
+
)
|
11 |
+
from networks.blocks.ifrnet import (
|
12 |
+
resize,
|
13 |
+
Encoder,
|
14 |
+
InitDecoder,
|
15 |
+
IntermediateDecoder
|
16 |
+
)
|
17 |
+
from networks.blocks.multi_flow import (
|
18 |
+
multi_flow_combine,
|
19 |
+
MultiFlowDecoder
|
20 |
+
)
|
21 |
+
|
22 |
+
class Model(nn.Module):
|
23 |
+
def __init__(self,
|
24 |
+
corr_radius=3,
|
25 |
+
corr_lvls=4,
|
26 |
+
num_flows=5,
|
27 |
+
channels=[84, 96, 112, 128],
|
28 |
+
skip_channels=84):
|
29 |
+
super(Model, self).__init__()
|
30 |
+
self.radius = corr_radius
|
31 |
+
self.corr_levels = corr_lvls
|
32 |
+
self.num_flows = num_flows
|
33 |
+
|
34 |
+
self.feat_encoder = LargeEncoder(output_dim=128, norm_fn='instance', dropout=0.)
|
35 |
+
self.encoder = Encoder(channels, large=True)
|
36 |
+
self.decoder4 = InitDecoder(channels[3], channels[2], skip_channels)
|
37 |
+
self.decoder3 = IntermediateDecoder(channels[2], channels[1], skip_channels)
|
38 |
+
self.decoder2 = IntermediateDecoder(channels[1], channels[0], skip_channels)
|
39 |
+
self.decoder1 = MultiFlowDecoder(channels[0], skip_channels, num_flows)
|
40 |
+
|
41 |
+
self.update4 = self._get_updateblock(112, None)
|
42 |
+
self.update3_low = self._get_updateblock(96, 2.0)
|
43 |
+
self.update2_low = self._get_updateblock(84, 4.0)
|
44 |
+
|
45 |
+
self.update3_high = self._get_updateblock(96, None)
|
46 |
+
self.update2_high = self._get_updateblock(84, None)
|
47 |
+
|
48 |
+
self.comb_block = nn.Sequential(
|
49 |
+
nn.Conv2d(3*self.num_flows, 6*self.num_flows, 7, 1, 3),
|
50 |
+
nn.PReLU(6*self.num_flows),
|
51 |
+
nn.Conv2d(6*self.num_flows, 3, 7, 1, 3),
|
52 |
+
)
|
53 |
+
|
54 |
+
def _get_updateblock(self, cdim, scale_factor=None):
|
55 |
+
return BasicUpdateBlock(cdim=cdim, hidden_dim=192, flow_dim=64,
|
56 |
+
corr_dim=256, corr_dim2=192, fc_dim=188,
|
57 |
+
scale_factor=scale_factor, corr_levels=self.corr_levels,
|
58 |
+
radius=self.radius)
|
59 |
+
|
60 |
+
def _corr_scale_lookup(self, corr_fn, coord, flow0, flow1, embt, downsample=1):
|
61 |
+
# convert t -> 0 to 0 -> 1 | convert t -> 1 to 1 -> 0
|
62 |
+
# based on linear assumption
|
63 |
+
t1_scale = 1. / embt
|
64 |
+
t0_scale = 1. / (1. - embt)
|
65 |
+
if downsample != 1:
|
66 |
+
inv = 1 / downsample
|
67 |
+
flow0 = inv * resize(flow0, scale_factor=inv)
|
68 |
+
flow1 = inv * resize(flow1, scale_factor=inv)
|
69 |
+
|
70 |
+
corr0, corr1 = corr_fn(coord + flow1 * t1_scale, coord + flow0 * t0_scale)
|
71 |
+
corr = torch.cat([corr0, corr1], dim=1)
|
72 |
+
flow = torch.cat([flow0, flow1], dim=1)
|
73 |
+
return corr, flow
|
74 |
+
|
75 |
+
def forward(self, img0, img1, embt, scale_factor=1.0, eval=False, **kwargs):
|
76 |
+
mean_ = torch.cat([img0, img1], 2).mean(1, keepdim=True).mean(2, keepdim=True).mean(3, keepdim=True)
|
77 |
+
img0 = img0 - mean_
|
78 |
+
img1 = img1 - mean_
|
79 |
+
img0_ = resize(img0, scale_factor) if scale_factor != 1.0 else img0
|
80 |
+
img1_ = resize(img1, scale_factor) if scale_factor != 1.0 else img1
|
81 |
+
b, _, h, w = img0_.shape
|
82 |
+
coord = coords_grid(b, h // 8, w // 8, img0.device)
|
83 |
+
|
84 |
+
fmap0, fmap1 = self.feat_encoder([img0_, img1_]) # [1, 128, H//8, W//8]
|
85 |
+
corr_fn = BidirCorrBlock(fmap0, fmap1, radius=self.radius, num_levels=self.corr_levels)
|
86 |
+
|
87 |
+
# f0_1: [1, c0, H//2, W//2] | f0_2: [1, c1, H//4, W//4]
|
88 |
+
# f0_3: [1, c2, H//8, W//8] | f0_4: [1, c3, H//16, W//16]
|
89 |
+
f0_1, f0_2, f0_3, f0_4 = self.encoder(img0_)
|
90 |
+
f1_1, f1_2, f1_3, f1_4 = self.encoder(img1_)
|
91 |
+
|
92 |
+
######################################### the 4th decoder #########################################
|
93 |
+
up_flow0_4, up_flow1_4, ft_3_ = self.decoder4(f0_4, f1_4, embt)
|
94 |
+
corr_4, flow_4 = self._corr_scale_lookup(corr_fn, coord,
|
95 |
+
up_flow0_4, up_flow1_4,
|
96 |
+
embt, downsample=1)
|
97 |
+
|
98 |
+
# residue update with lookup corr
|
99 |
+
delta_ft_3_, delta_flow_4 = self.update4(ft_3_, flow_4, corr_4)
|
100 |
+
delta_flow0_4, delta_flow1_4 = torch.chunk(delta_flow_4, 2, 1)
|
101 |
+
up_flow0_4 = up_flow0_4 + delta_flow0_4
|
102 |
+
up_flow1_4 = up_flow1_4 + delta_flow1_4
|
103 |
+
ft_3_ = ft_3_ + delta_ft_3_
|
104 |
+
|
105 |
+
######################################### the 3rd decoder #########################################
|
106 |
+
up_flow0_3, up_flow1_3, ft_2_ = self.decoder3(ft_3_, f0_3, f1_3, up_flow0_4, up_flow1_4)
|
107 |
+
corr_3, flow_3 = self._corr_scale_lookup(corr_fn,
|
108 |
+
coord, up_flow0_3, up_flow1_3,
|
109 |
+
embt, downsample=2)
|
110 |
+
|
111 |
+
# residue update with lookup corr
|
112 |
+
delta_ft_2_, delta_flow_3 = self.update3_low(ft_2_, flow_3, corr_3)
|
113 |
+
delta_flow0_3, delta_flow1_3 = torch.chunk(delta_flow_3, 2, 1)
|
114 |
+
up_flow0_3 = up_flow0_3 + delta_flow0_3
|
115 |
+
up_flow1_3 = up_flow1_3 + delta_flow1_3
|
116 |
+
ft_2_ = ft_2_ + delta_ft_2_
|
117 |
+
|
118 |
+
# residue update with lookup corr (hr)
|
119 |
+
corr_3 = resize(corr_3, scale_factor=2.0)
|
120 |
+
up_flow_3 = torch.cat([up_flow0_3, up_flow1_3], dim=1)
|
121 |
+
delta_ft_2_, delta_up_flow_3 = self.update3_high(ft_2_, up_flow_3, corr_3)
|
122 |
+
ft_2_ += delta_ft_2_
|
123 |
+
up_flow0_3 += delta_up_flow_3[:, 0:2]
|
124 |
+
up_flow1_3 += delta_up_flow_3[:, 2:4]
|
125 |
+
|
126 |
+
######################################### the 2nd decoder #########################################
|
127 |
+
up_flow0_2, up_flow1_2, ft_1_ = self.decoder2(ft_2_, f0_2, f1_2, up_flow0_3, up_flow1_3)
|
128 |
+
corr_2, flow_2 = self._corr_scale_lookup(corr_fn,
|
129 |
+
coord, up_flow0_2, up_flow1_2,
|
130 |
+
embt, downsample=4)
|
131 |
+
|
132 |
+
# residue update with lookup corr
|
133 |
+
delta_ft_1_, delta_flow_2 = self.update2_low(ft_1_, flow_2, corr_2)
|
134 |
+
delta_flow0_2, delta_flow1_2 = torch.chunk(delta_flow_2, 2, 1)
|
135 |
+
up_flow0_2 = up_flow0_2 + delta_flow0_2
|
136 |
+
up_flow1_2 = up_flow1_2 + delta_flow1_2
|
137 |
+
ft_1_ = ft_1_ + delta_ft_1_
|
138 |
+
|
139 |
+
# residue update with lookup corr (hr)
|
140 |
+
corr_2 = resize(corr_2, scale_factor=4.0)
|
141 |
+
up_flow_2 = torch.cat([up_flow0_2, up_flow1_2], dim=1)
|
142 |
+
delta_ft_1_, delta_up_flow_2 = self.update2_high(ft_1_, up_flow_2, corr_2)
|
143 |
+
ft_1_ += delta_ft_1_
|
144 |
+
up_flow0_2 += delta_up_flow_2[:, 0:2]
|
145 |
+
up_flow1_2 += delta_up_flow_2[:, 2:4]
|
146 |
+
|
147 |
+
######################################### the 1st decoder #########################################
|
148 |
+
up_flow0_1, up_flow1_1, mask, img_res = self.decoder1(ft_1_, f0_1, f1_1, up_flow0_2, up_flow1_2)
|
149 |
+
|
150 |
+
if scale_factor != 1.0:
|
151 |
+
up_flow0_1 = resize(up_flow0_1, scale_factor=(1.0/scale_factor)) * (1.0/scale_factor)
|
152 |
+
up_flow1_1 = resize(up_flow1_1, scale_factor=(1.0/scale_factor)) * (1.0/scale_factor)
|
153 |
+
mask = resize(mask, scale_factor=(1.0/scale_factor))
|
154 |
+
img_res = resize(img_res, scale_factor=(1.0/scale_factor))
|
155 |
+
|
156 |
+
imgt_pred = multi_flow_combine(self.comb_block, img0, img1, up_flow0_1, up_flow1_1,
|
157 |
+
mask, img_res, mean_)
|
158 |
+
imgt_pred = torch.clamp(imgt_pred, 0, 1)
|
159 |
+
|
160 |
+
if eval:
|
161 |
+
return { 'imgt_pred': imgt_pred, }
|
162 |
+
else:
|
163 |
+
up_flow0_1 = up_flow0_1.reshape(b, self.num_flows, 2, h, w)
|
164 |
+
up_flow1_1 = up_flow1_1.reshape(b, self.num_flows, 2, h, w)
|
165 |
+
return {
|
166 |
+
'imgt_pred': imgt_pred,
|
167 |
+
'flow0_pred': [up_flow0_1, up_flow0_2, up_flow0_3, up_flow0_4],
|
168 |
+
'flow1_pred': [up_flow1_1, up_flow1_2, up_flow1_3, up_flow1_4],
|
169 |
+
'ft_pred': [ft_1_, ft_2_, ft_3_],
|
170 |
+
}
|
networks/amtl.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from networks.blocks.raft import (
|
4 |
+
coords_grid,
|
5 |
+
BasicUpdateBlock, BidirCorrBlock
|
6 |
+
)
|
7 |
+
from networks.blocks.feat_enc import (
|
8 |
+
BasicEncoder
|
9 |
+
)
|
10 |
+
from networks.blocks.ifrnet import (
|
11 |
+
resize,
|
12 |
+
Encoder,
|
13 |
+
InitDecoder,
|
14 |
+
IntermediateDecoder
|
15 |
+
)
|
16 |
+
from networks.blocks.multi_flow import (
|
17 |
+
multi_flow_combine,
|
18 |
+
MultiFlowDecoder
|
19 |
+
)
|
20 |
+
|
21 |
+
class Model(nn.Module):
|
22 |
+
def __init__(self,
|
23 |
+
corr_radius=3,
|
24 |
+
corr_lvls=4,
|
25 |
+
num_flows=5,
|
26 |
+
channels=[48, 64, 72, 128],
|
27 |
+
skip_channels=48
|
28 |
+
):
|
29 |
+
super(Model, self).__init__()
|
30 |
+
self.radius = corr_radius
|
31 |
+
self.corr_levels = corr_lvls
|
32 |
+
self.num_flows = num_flows
|
33 |
+
|
34 |
+
self.feat_encoder = BasicEncoder(output_dim=128, norm_fn='instance', dropout=0.)
|
35 |
+
self.encoder = Encoder([48, 64, 72, 128], large=True)
|
36 |
+
|
37 |
+
self.decoder4 = InitDecoder(channels[3], channels[2], skip_channels)
|
38 |
+
self.decoder3 = IntermediateDecoder(channels[2], channels[1], skip_channels)
|
39 |
+
self.decoder2 = IntermediateDecoder(channels[1], channels[0], skip_channels)
|
40 |
+
self.decoder1 = MultiFlowDecoder(channels[0], skip_channels, num_flows)
|
41 |
+
|
42 |
+
self.update4 = self._get_updateblock(72, None)
|
43 |
+
self.update3 = self._get_updateblock(64, 2.0)
|
44 |
+
self.update2 = self._get_updateblock(48, 4.0)
|
45 |
+
|
46 |
+
self.comb_block = nn.Sequential(
|
47 |
+
nn.Conv2d(3*self.num_flows, 6*self.num_flows, 7, 1, 3),
|
48 |
+
nn.PReLU(6*self.num_flows),
|
49 |
+
nn.Conv2d(6*self.num_flows, 3, 7, 1, 3),
|
50 |
+
)
|
51 |
+
|
52 |
+
def _get_updateblock(self, cdim, scale_factor=None):
|
53 |
+
return BasicUpdateBlock(cdim=cdim, hidden_dim=128, flow_dim=48,
|
54 |
+
corr_dim=256, corr_dim2=160, fc_dim=124,
|
55 |
+
scale_factor=scale_factor, corr_levels=self.corr_levels,
|
56 |
+
radius=self.radius)
|
57 |
+
|
58 |
+
def _corr_scale_lookup(self, corr_fn, coord, flow0, flow1, embt, downsample=1):
|
59 |
+
# convert t -> 0 to 0 -> 1 | convert t -> 1 to 1 -> 0
|
60 |
+
# based on linear assumption
|
61 |
+
t1_scale = 1. / embt
|
62 |
+
t0_scale = 1. / (1. - embt)
|
63 |
+
if downsample != 1:
|
64 |
+
inv = 1 / downsample
|
65 |
+
flow0 = inv * resize(flow0, scale_factor=inv)
|
66 |
+
flow1 = inv * resize(flow1, scale_factor=inv)
|
67 |
+
|
68 |
+
corr0, corr1 = corr_fn(coord + flow1 * t1_scale, coord + flow0 * t0_scale)
|
69 |
+
corr = torch.cat([corr0, corr1], dim=1)
|
70 |
+
flow = torch.cat([flow0, flow1], dim=1)
|
71 |
+
return corr, flow
|
72 |
+
|
73 |
+
def forward(self, img0, img1, embt, scale_factor=1.0, eval=False, **kwargs):
|
74 |
+
mean_ = torch.cat([img0, img1], 2).mean(1, keepdim=True).mean(2, keepdim=True).mean(3, keepdim=True)
|
75 |
+
img0 = img0 - mean_
|
76 |
+
img1 = img1 - mean_
|
77 |
+
img0_ = resize(img0, scale_factor) if scale_factor != 1.0 else img0
|
78 |
+
img1_ = resize(img1, scale_factor) if scale_factor != 1.0 else img1
|
79 |
+
b, _, h, w = img0_.shape
|
80 |
+
coord = coords_grid(b, h // 8, w // 8, img0.device)
|
81 |
+
|
82 |
+
fmap0, fmap1 = self.feat_encoder([img0_, img1_]) # [1, 128, H//8, W//8]
|
83 |
+
corr_fn = BidirCorrBlock(fmap0, fmap1, radius=self.radius, num_levels=self.corr_levels)
|
84 |
+
|
85 |
+
# f0_1: [1, c0, H//2, W//2] | f0_2: [1, c1, H//4, W//4]
|
86 |
+
# f0_3: [1, c2, H//8, W//8] | f0_4: [1, c3, H//16, W//16]
|
87 |
+
f0_1, f0_2, f0_3, f0_4 = self.encoder(img0_)
|
88 |
+
f1_1, f1_2, f1_3, f1_4 = self.encoder(img1_)
|
89 |
+
|
90 |
+
######################################### the 4th decoder #########################################
|
91 |
+
up_flow0_4, up_flow1_4, ft_3_ = self.decoder4(f0_4, f1_4, embt)
|
92 |
+
corr_4, flow_4 = self._corr_scale_lookup(corr_fn, coord,
|
93 |
+
up_flow0_4, up_flow1_4,
|
94 |
+
embt, downsample=1)
|
95 |
+
|
96 |
+
# residue update with lookup corr
|
97 |
+
delta_ft_3_, delta_flow_4 = self.update4(ft_3_, flow_4, corr_4)
|
98 |
+
delta_flow0_4, delta_flow1_4 = torch.chunk(delta_flow_4, 2, 1)
|
99 |
+
up_flow0_4 = up_flow0_4 + delta_flow0_4
|
100 |
+
up_flow1_4 = up_flow1_4 + delta_flow1_4
|
101 |
+
ft_3_ = ft_3_ + delta_ft_3_
|
102 |
+
|
103 |
+
######################################### the 3rd decoder #########################################
|
104 |
+
up_flow0_3, up_flow1_3, ft_2_ = self.decoder3(ft_3_, f0_3, f1_3, up_flow0_4, up_flow1_4)
|
105 |
+
corr_3, flow_3 = self._corr_scale_lookup(corr_fn,
|
106 |
+
coord, up_flow0_3, up_flow1_3,
|
107 |
+
embt, downsample=2)
|
108 |
+
|
109 |
+
# residue update with lookup corr
|
110 |
+
delta_ft_2_, delta_flow_3 = self.update3(ft_2_, flow_3, corr_3)
|
111 |
+
delta_flow0_3, delta_flow1_3 = torch.chunk(delta_flow_3, 2, 1)
|
112 |
+
up_flow0_3 = up_flow0_3 + delta_flow0_3
|
113 |
+
up_flow1_3 = up_flow1_3 + delta_flow1_3
|
114 |
+
ft_2_ = ft_2_ + delta_ft_2_
|
115 |
+
|
116 |
+
######################################### the 2nd decoder #########################################
|
117 |
+
up_flow0_2, up_flow1_2, ft_1_ = self.decoder2(ft_2_, f0_2, f1_2, up_flow0_3, up_flow1_3)
|
118 |
+
corr_2, flow_2 = self._corr_scale_lookup(corr_fn,
|
119 |
+
coord, up_flow0_2, up_flow1_2,
|
120 |
+
embt, downsample=4)
|
121 |
+
|
122 |
+
# residue update with lookup corr
|
123 |
+
delta_ft_1_, delta_flow_2 = self.update2(ft_1_, flow_2, corr_2)
|
124 |
+
delta_flow0_2, delta_flow1_2 = torch.chunk(delta_flow_2, 2, 1)
|
125 |
+
up_flow0_2 = up_flow0_2 + delta_flow0_2
|
126 |
+
up_flow1_2 = up_flow1_2 + delta_flow1_2
|
127 |
+
ft_1_ = ft_1_ + delta_ft_1_
|
128 |
+
|
129 |
+
######################################### the 1st decoder #########################################
|
130 |
+
up_flow0_1, up_flow1_1, mask, img_res = self.decoder1(ft_1_, f0_1, f1_1, up_flow0_2, up_flow1_2)
|
131 |
+
|
132 |
+
if scale_factor != 1.0:
|
133 |
+
up_flow0_1 = resize(up_flow0_1, scale_factor=(1.0/scale_factor)) * (1.0/scale_factor)
|
134 |
+
up_flow1_1 = resize(up_flow1_1, scale_factor=(1.0/scale_factor)) * (1.0/scale_factor)
|
135 |
+
mask = resize(mask, scale_factor=(1.0/scale_factor))
|
136 |
+
img_res = resize(img_res, scale_factor=(1.0/scale_factor))
|
137 |
+
|
138 |
+
imgt_pred = multi_flow_combine(self.comb_block, img0, img1, up_flow0_1, up_flow1_1,
|
139 |
+
mask, img_res, mean_)
|
140 |
+
imgt_pred = torch.clamp(imgt_pred, 0, 1)
|
141 |
+
|
142 |
+
if eval:
|
143 |
+
return { 'imgt_pred': imgt_pred, }
|
144 |
+
else:
|
145 |
+
up_flow0_1 = up_flow0_1.reshape(b, self.num_flows, 2, h, w)
|
146 |
+
up_flow1_1 = up_flow1_1.reshape(b, self.num_flows, 2, h, w)
|
147 |
+
return {
|
148 |
+
'imgt_pred': imgt_pred,
|
149 |
+
'flow0_pred': [up_flow0_1, up_flow0_2, up_flow0_3, up_flow0_4],
|
150 |
+
'flow1_pred': [up_flow1_1, up_flow1_2, up_flow1_3, up_flow1_4],
|
151 |
+
'ft_pred': [ft_1_, ft_2_, ft_3_],
|
152 |
+
}
|
153 |
+
|
networks/amts.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from networks.blocks.raft import (
|
4 |
+
coords_grid,
|
5 |
+
SmallUpdateBlock, BidirCorrBlock
|
6 |
+
)
|
7 |
+
from networks.blocks.feat_enc import (
|
8 |
+
SmallEncoder
|
9 |
+
)
|
10 |
+
from networks.blocks.ifrnet import (
|
11 |
+
resize,
|
12 |
+
Encoder,
|
13 |
+
InitDecoder,
|
14 |
+
IntermediateDecoder
|
15 |
+
)
|
16 |
+
from networks.blocks.multi_flow import (
|
17 |
+
multi_flow_combine,
|
18 |
+
MultiFlowDecoder
|
19 |
+
)
|
20 |
+
|
21 |
+
class Model(nn.Module):
|
22 |
+
def __init__(self,
|
23 |
+
corr_radius=3,
|
24 |
+
corr_lvls=4,
|
25 |
+
num_flows=3,
|
26 |
+
channels=[20, 32, 44, 56],
|
27 |
+
skip_channels=20):
|
28 |
+
super(Model, self).__init__()
|
29 |
+
self.radius = corr_radius
|
30 |
+
self.corr_levels = corr_lvls
|
31 |
+
self.num_flows = num_flows
|
32 |
+
self.channels = channels
|
33 |
+
self.skip_channels = skip_channels
|
34 |
+
|
35 |
+
self.feat_encoder = SmallEncoder(output_dim=84, norm_fn='instance', dropout=0.)
|
36 |
+
self.encoder = Encoder(channels)
|
37 |
+
|
38 |
+
self.decoder4 = InitDecoder(channels[3], channels[2], skip_channels)
|
39 |
+
self.decoder3 = IntermediateDecoder(channels[2], channels[1], skip_channels)
|
40 |
+
self.decoder2 = IntermediateDecoder(channels[1], channels[0], skip_channels)
|
41 |
+
self.decoder1 = MultiFlowDecoder(channels[0], skip_channels, num_flows)
|
42 |
+
|
43 |
+
self.update4 = self._get_updateblock(44)
|
44 |
+
self.update3 = self._get_updateblock(32, 2)
|
45 |
+
self.update2 = self._get_updateblock(20, 4)
|
46 |
+
|
47 |
+
self.comb_block = nn.Sequential(
|
48 |
+
nn.Conv2d(3*num_flows, 6*num_flows, 3, 1, 1),
|
49 |
+
nn.PReLU(6*num_flows),
|
50 |
+
nn.Conv2d(6*num_flows, 3, 3, 1, 1),
|
51 |
+
)
|
52 |
+
|
53 |
+
def _get_updateblock(self, cdim, scale_factor=None):
|
54 |
+
return SmallUpdateBlock(cdim=cdim, hidden_dim=76, flow_dim=20, corr_dim=64,
|
55 |
+
fc_dim=68, scale_factor=scale_factor,
|
56 |
+
corr_levels=self.corr_levels, radius=self.radius)
|
57 |
+
|
58 |
+
def _corr_scale_lookup(self, corr_fn, coord, flow0, flow1, embt, downsample=1):
|
59 |
+
# convert t -> 0 to 0 -> 1 | convert t -> 1 to 1 -> 0
|
60 |
+
# based on linear assumption
|
61 |
+
t1_scale = 1. / embt
|
62 |
+
t0_scale = 1. / (1. - embt)
|
63 |
+
if downsample != 1:
|
64 |
+
inv = 1 / downsample
|
65 |
+
flow0 = inv * resize(flow0, scale_factor=inv)
|
66 |
+
flow1 = inv * resize(flow1, scale_factor=inv)
|
67 |
+
|
68 |
+
corr0, corr1 = corr_fn(coord + flow1 * t1_scale, coord + flow0 * t0_scale)
|
69 |
+
corr = torch.cat([corr0, corr1], dim=1)
|
70 |
+
flow = torch.cat([flow0, flow1], dim=1)
|
71 |
+
return corr, flow
|
72 |
+
|
73 |
+
def forward(self, img0, img1, embt, scale_factor=1.0, eval=False, **kwargs):
|
74 |
+
mean_ = torch.cat([img0, img1], 2).mean(1, keepdim=True).mean(2, keepdim=True).mean(3, keepdim=True)
|
75 |
+
img0 = img0 - mean_
|
76 |
+
img1 = img1 - mean_
|
77 |
+
img0_ = resize(img0, scale_factor) if scale_factor != 1.0 else img0
|
78 |
+
img1_ = resize(img1, scale_factor) if scale_factor != 1.0 else img1
|
79 |
+
b, _, h, w = img0_.shape
|
80 |
+
coord = coords_grid(b, h // 8, w // 8, img0.device)
|
81 |
+
|
82 |
+
fmap0, fmap1 = self.feat_encoder([img0_, img1_]) # [1, 128, H//8, W//8]
|
83 |
+
corr_fn = BidirCorrBlock(fmap0, fmap1, radius=self.radius, num_levels=self.corr_levels)
|
84 |
+
|
85 |
+
# f0_1: [1, c0, H//2, W//2] | f0_2: [1, c1, H//4, W//4]
|
86 |
+
# f0_3: [1, c2, H//8, W//8] | f0_4: [1, c3, H//16, W//16]
|
87 |
+
f0_1, f0_2, f0_3, f0_4 = self.encoder(img0_)
|
88 |
+
f1_1, f1_2, f1_3, f1_4 = self.encoder(img1_)
|
89 |
+
|
90 |
+
######################################### the 4th decoder #########################################
|
91 |
+
up_flow0_4, up_flow1_4, ft_3_ = self.decoder4(f0_4, f1_4, embt)
|
92 |
+
corr_4, flow_4 = self._corr_scale_lookup(corr_fn, coord,
|
93 |
+
up_flow0_4, up_flow1_4,
|
94 |
+
embt, downsample=1)
|
95 |
+
|
96 |
+
# residue update with lookup corr
|
97 |
+
delta_ft_3_, delta_flow_4 = self.update4(ft_3_, flow_4, corr_4)
|
98 |
+
delta_flow0_4, delta_flow1_4 = torch.chunk(delta_flow_4, 2, 1)
|
99 |
+
up_flow0_4 = up_flow0_4 + delta_flow0_4
|
100 |
+
up_flow1_4 = up_flow1_4 + delta_flow1_4
|
101 |
+
ft_3_ = ft_3_ + delta_ft_3_
|
102 |
+
|
103 |
+
######################################### the 3rd decoder #########################################
|
104 |
+
up_flow0_3, up_flow1_3, ft_2_ = self.decoder3(ft_3_, f0_3, f1_3, up_flow0_4, up_flow1_4)
|
105 |
+
corr_3, flow_3 = self._corr_scale_lookup(corr_fn,
|
106 |
+
coord, up_flow0_3, up_flow1_3,
|
107 |
+
embt, downsample=2)
|
108 |
+
|
109 |
+
# residue update with lookup corr
|
110 |
+
delta_ft_2_, delta_flow_3 = self.update3(ft_2_, flow_3, corr_3)
|
111 |
+
delta_flow0_3, delta_flow1_3 = torch.chunk(delta_flow_3, 2, 1)
|
112 |
+
up_flow0_3 = up_flow0_3 + delta_flow0_3
|
113 |
+
up_flow1_3 = up_flow1_3 + delta_flow1_3
|
114 |
+
ft_2_ = ft_2_ + delta_ft_2_
|
115 |
+
|
116 |
+
######################################### the 2nd decoder #########################################
|
117 |
+
up_flow0_2, up_flow1_2, ft_1_ = self.decoder2(ft_2_, f0_2, f1_2, up_flow0_3, up_flow1_3)
|
118 |
+
corr_2, flow_2 = self._corr_scale_lookup(corr_fn,
|
119 |
+
coord, up_flow0_2, up_flow1_2,
|
120 |
+
embt, downsample=4)
|
121 |
+
|
122 |
+
# residue update with lookup corr
|
123 |
+
delta_ft_1_, delta_flow_2 = self.update2(ft_1_, flow_2, corr_2)
|
124 |
+
delta_flow0_2, delta_flow1_2 = torch.chunk(delta_flow_2, 2, 1)
|
125 |
+
up_flow0_2 = up_flow0_2 + delta_flow0_2
|
126 |
+
up_flow1_2 = up_flow1_2 + delta_flow1_2
|
127 |
+
ft_1_ = ft_1_ + delta_ft_1_
|
128 |
+
|
129 |
+
######################################### the 1st decoder #########################################
|
130 |
+
up_flow0_1, up_flow1_1, mask, img_res = self.decoder1(ft_1_, f0_1, f1_1, up_flow0_2, up_flow1_2)
|
131 |
+
|
132 |
+
if scale_factor != 1.0:
|
133 |
+
up_flow0_1 = resize(up_flow0_1, scale_factor=(1.0/scale_factor)) * (1.0/scale_factor)
|
134 |
+
up_flow1_1 = resize(up_flow1_1, scale_factor=(1.0/scale_factor)) * (1.0/scale_factor)
|
135 |
+
mask = resize(mask, scale_factor=(1.0/scale_factor))
|
136 |
+
img_res = resize(img_res, scale_factor=(1.0/scale_factor))
|
137 |
+
|
138 |
+
imgt_pred = multi_flow_combine(self.comb_block, img0, img1, up_flow0_1, up_flow1_1,
|
139 |
+
mask, img_res, mean_)
|
140 |
+
imgt_pred = torch.clamp(imgt_pred, 0, 1)
|
141 |
+
|
142 |
+
if eval:
|
143 |
+
return { 'imgt_pred': imgt_pred, }
|
144 |
+
else:
|
145 |
+
up_flow0_1 = up_flow0_1.reshape(b, self.num_flows, 2, h, w)
|
146 |
+
up_flow1_1 = up_flow1_1.reshape(b, self.num_flows, 2, h, w)
|
147 |
+
return {
|
148 |
+
'imgt_pred': imgt_pred,
|
149 |
+
'flow0_pred': [up_flow0_1, up_flow0_2, up_flow0_3, up_flow0_4],
|
150 |
+
'flow1_pred': [up_flow1_1, up_flow1_2, up_flow1_3, up_flow1_4],
|
151 |
+
'ft_pred': [ft_1_, ft_2_, ft_3_],
|
152 |
+
}
|
networks/blocks/__init__.py
ADDED
File without changes
|
networks/blocks/feat_enc.py
ADDED
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
This code is partially borrowed from RAFT (https://github.com/princeton-vl/RAFT).
|
3 |
+
'''
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
|
7 |
+
class BottleneckBlock(nn.Module):
|
8 |
+
def __init__(self, in_planes, planes, norm_fn='group', stride=1):
|
9 |
+
super(BottleneckBlock, self).__init__()
|
10 |
+
|
11 |
+
self.conv1 = nn.Conv2d(in_planes, planes//4, kernel_size=1, padding=0)
|
12 |
+
self.conv2 = nn.Conv2d(planes//4, planes//4, kernel_size=3, padding=1, stride=stride)
|
13 |
+
self.conv3 = nn.Conv2d(planes//4, planes, kernel_size=1, padding=0)
|
14 |
+
self.relu = nn.ReLU(inplace=True)
|
15 |
+
|
16 |
+
num_groups = planes // 8
|
17 |
+
|
18 |
+
if norm_fn == 'group':
|
19 |
+
self.norm1 = nn.GroupNorm(num_groups=num_groups, num_channels=planes//4)
|
20 |
+
self.norm2 = nn.GroupNorm(num_groups=num_groups, num_channels=planes//4)
|
21 |
+
self.norm3 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
|
22 |
+
if not stride == 1:
|
23 |
+
self.norm4 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
|
24 |
+
|
25 |
+
|
26 |
+
elif norm_fn == 'batch':
|
27 |
+
self.norm1 = nn.BatchNorm2d(planes//4)
|
28 |
+
self.norm2 = nn.BatchNorm2d(planes//4)
|
29 |
+
self.norm3 = nn.BatchNorm2d(planes)
|
30 |
+
if not stride == 1:
|
31 |
+
self.norm4 = nn.BatchNorm2d(planes)
|
32 |
+
|
33 |
+
elif norm_fn == 'instance':
|
34 |
+
self.norm1 = nn.InstanceNorm2d(planes//4)
|
35 |
+
self.norm2 = nn.InstanceNorm2d(planes//4)
|
36 |
+
self.norm3 = nn.InstanceNorm2d(planes)
|
37 |
+
if not stride == 1:
|
38 |
+
self.norm4 = nn.InstanceNorm2d(planes)
|
39 |
+
|
40 |
+
elif norm_fn == 'none':
|
41 |
+
self.norm1 = nn.Sequential()
|
42 |
+
self.norm2 = nn.Sequential()
|
43 |
+
self.norm3 = nn.Sequential()
|
44 |
+
if not stride == 1:
|
45 |
+
self.norm4 = nn.Sequential()
|
46 |
+
|
47 |
+
if stride == 1:
|
48 |
+
self.downsample = None
|
49 |
+
|
50 |
+
else:
|
51 |
+
self.downsample = nn.Sequential(
|
52 |
+
nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride), self.norm4)
|
53 |
+
|
54 |
+
|
55 |
+
def forward(self, x):
|
56 |
+
y = x
|
57 |
+
y = self.relu(self.norm1(self.conv1(y)))
|
58 |
+
y = self.relu(self.norm2(self.conv2(y)))
|
59 |
+
y = self.relu(self.norm3(self.conv3(y)))
|
60 |
+
|
61 |
+
if self.downsample is not None:
|
62 |
+
x = self.downsample(x)
|
63 |
+
|
64 |
+
return self.relu(x+y)
|
65 |
+
|
66 |
+
|
67 |
+
class ResidualBlock(nn.Module):
|
68 |
+
def __init__(self, in_planes, planes, norm_fn='group', stride=1):
|
69 |
+
super(ResidualBlock, self).__init__()
|
70 |
+
|
71 |
+
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, padding=1, stride=stride)
|
72 |
+
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1)
|
73 |
+
self.relu = nn.ReLU(inplace=True)
|
74 |
+
|
75 |
+
num_groups = planes // 8
|
76 |
+
|
77 |
+
if norm_fn == 'group':
|
78 |
+
self.norm1 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
|
79 |
+
self.norm2 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
|
80 |
+
if not stride == 1:
|
81 |
+
self.norm3 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
|
82 |
+
|
83 |
+
elif norm_fn == 'batch':
|
84 |
+
self.norm1 = nn.BatchNorm2d(planes)
|
85 |
+
self.norm2 = nn.BatchNorm2d(planes)
|
86 |
+
if not stride == 1:
|
87 |
+
self.norm3 = nn.BatchNorm2d(planes)
|
88 |
+
|
89 |
+
elif norm_fn == 'instance':
|
90 |
+
self.norm1 = nn.InstanceNorm2d(planes)
|
91 |
+
self.norm2 = nn.InstanceNorm2d(planes)
|
92 |
+
if not stride == 1:
|
93 |
+
self.norm3 = nn.InstanceNorm2d(planes)
|
94 |
+
|
95 |
+
elif norm_fn == 'none':
|
96 |
+
self.norm1 = nn.Sequential()
|
97 |
+
self.norm2 = nn.Sequential()
|
98 |
+
if not stride == 1:
|
99 |
+
self.norm3 = nn.Sequential()
|
100 |
+
|
101 |
+
if stride == 1:
|
102 |
+
self.downsample = None
|
103 |
+
|
104 |
+
else:
|
105 |
+
self.downsample = nn.Sequential(
|
106 |
+
nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride), self.norm3)
|
107 |
+
|
108 |
+
|
109 |
+
def forward(self, x):
|
110 |
+
y = x
|
111 |
+
y = self.relu(self.norm1(self.conv1(y)))
|
112 |
+
y = self.relu(self.norm2(self.conv2(y)))
|
113 |
+
|
114 |
+
if self.downsample is not None:
|
115 |
+
x = self.downsample(x)
|
116 |
+
|
117 |
+
return self.relu(x+y)
|
118 |
+
|
119 |
+
|
120 |
+
class SmallEncoder(nn.Module):
|
121 |
+
def __init__(self, output_dim=128, norm_fn='batch', dropout=0.0):
|
122 |
+
super(SmallEncoder, self).__init__()
|
123 |
+
self.norm_fn = norm_fn
|
124 |
+
|
125 |
+
if self.norm_fn == 'group':
|
126 |
+
self.norm1 = nn.GroupNorm(num_groups=8, num_channels=32)
|
127 |
+
|
128 |
+
elif self.norm_fn == 'batch':
|
129 |
+
self.norm1 = nn.BatchNorm2d(32)
|
130 |
+
|
131 |
+
elif self.norm_fn == 'instance':
|
132 |
+
self.norm1 = nn.InstanceNorm2d(32)
|
133 |
+
|
134 |
+
elif self.norm_fn == 'none':
|
135 |
+
self.norm1 = nn.Sequential()
|
136 |
+
|
137 |
+
self.conv1 = nn.Conv2d(3, 32, kernel_size=7, stride=2, padding=3)
|
138 |
+
self.relu1 = nn.ReLU(inplace=True)
|
139 |
+
|
140 |
+
self.in_planes = 32
|
141 |
+
self.layer1 = self._make_layer(32, stride=1)
|
142 |
+
self.layer2 = self._make_layer(64, stride=2)
|
143 |
+
self.layer3 = self._make_layer(96, stride=2)
|
144 |
+
|
145 |
+
self.dropout = None
|
146 |
+
if dropout > 0:
|
147 |
+
self.dropout = nn.Dropout2d(p=dropout)
|
148 |
+
|
149 |
+
self.conv2 = nn.Conv2d(96, output_dim, kernel_size=1)
|
150 |
+
|
151 |
+
for m in self.modules():
|
152 |
+
if isinstance(m, nn.Conv2d):
|
153 |
+
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
154 |
+
elif isinstance(m, (nn.BatchNorm2d, nn.InstanceNorm2d, nn.GroupNorm)):
|
155 |
+
if m.weight is not None:
|
156 |
+
nn.init.constant_(m.weight, 1)
|
157 |
+
if m.bias is not None:
|
158 |
+
nn.init.constant_(m.bias, 0)
|
159 |
+
|
160 |
+
def _make_layer(self, dim, stride=1):
|
161 |
+
layer1 = BottleneckBlock(self.in_planes, dim, self.norm_fn, stride=stride)
|
162 |
+
layer2 = BottleneckBlock(dim, dim, self.norm_fn, stride=1)
|
163 |
+
layers = (layer1, layer2)
|
164 |
+
|
165 |
+
self.in_planes = dim
|
166 |
+
return nn.Sequential(*layers)
|
167 |
+
|
168 |
+
|
169 |
+
def forward(self, x):
|
170 |
+
|
171 |
+
# if input is list, combine batch dimension
|
172 |
+
is_list = isinstance(x, tuple) or isinstance(x, list)
|
173 |
+
if is_list:
|
174 |
+
batch_dim = x[0].shape[0]
|
175 |
+
x = torch.cat(x, dim=0)
|
176 |
+
|
177 |
+
x = self.conv1(x)
|
178 |
+
x = self.norm1(x)
|
179 |
+
x = self.relu1(x)
|
180 |
+
|
181 |
+
x = self.layer1(x)
|
182 |
+
x = self.layer2(x)
|
183 |
+
x = self.layer3(x)
|
184 |
+
x = self.conv2(x)
|
185 |
+
|
186 |
+
if self.training and self.dropout is not None:
|
187 |
+
x = self.dropout(x)
|
188 |
+
|
189 |
+
if is_list:
|
190 |
+
x = torch.split(x, [batch_dim, batch_dim], dim=0)
|
191 |
+
|
192 |
+
return x
|
193 |
+
|
194 |
+
class BasicEncoder(nn.Module):
|
195 |
+
def __init__(self, output_dim=128, norm_fn='batch', dropout=0.0):
|
196 |
+
super(BasicEncoder, self).__init__()
|
197 |
+
self.norm_fn = norm_fn
|
198 |
+
|
199 |
+
if self.norm_fn == 'group':
|
200 |
+
self.norm1 = nn.GroupNorm(num_groups=8, num_channels=64)
|
201 |
+
|
202 |
+
elif self.norm_fn == 'batch':
|
203 |
+
self.norm1 = nn.BatchNorm2d(64)
|
204 |
+
|
205 |
+
elif self.norm_fn == 'instance':
|
206 |
+
self.norm1 = nn.InstanceNorm2d(64)
|
207 |
+
|
208 |
+
elif self.norm_fn == 'none':
|
209 |
+
self.norm1 = nn.Sequential()
|
210 |
+
|
211 |
+
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3)
|
212 |
+
self.relu1 = nn.ReLU(inplace=True)
|
213 |
+
|
214 |
+
self.in_planes = 64
|
215 |
+
self.layer1 = self._make_layer(64, stride=1)
|
216 |
+
self.layer2 = self._make_layer(72, stride=2)
|
217 |
+
self.layer3 = self._make_layer(128, stride=2)
|
218 |
+
|
219 |
+
# output convolution
|
220 |
+
self.conv2 = nn.Conv2d(128, output_dim, kernel_size=1)
|
221 |
+
|
222 |
+
self.dropout = None
|
223 |
+
if dropout > 0:
|
224 |
+
self.dropout = nn.Dropout2d(p=dropout)
|
225 |
+
|
226 |
+
for m in self.modules():
|
227 |
+
if isinstance(m, nn.Conv2d):
|
228 |
+
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
229 |
+
elif isinstance(m, (nn.BatchNorm2d, nn.InstanceNorm2d, nn.GroupNorm)):
|
230 |
+
if m.weight is not None:
|
231 |
+
nn.init.constant_(m.weight, 1)
|
232 |
+
if m.bias is not None:
|
233 |
+
nn.init.constant_(m.bias, 0)
|
234 |
+
|
235 |
+
def _make_layer(self, dim, stride=1):
|
236 |
+
layer1 = ResidualBlock(self.in_planes, dim, self.norm_fn, stride=stride)
|
237 |
+
layer2 = ResidualBlock(dim, dim, self.norm_fn, stride=1)
|
238 |
+
layers = (layer1, layer2)
|
239 |
+
|
240 |
+
self.in_planes = dim
|
241 |
+
return nn.Sequential(*layers)
|
242 |
+
|
243 |
+
|
244 |
+
def forward(self, x):
|
245 |
+
|
246 |
+
# if input is list, combine batch dimension
|
247 |
+
is_list = isinstance(x, tuple) or isinstance(x, list)
|
248 |
+
if is_list:
|
249 |
+
batch_dim = x[0].shape[0]
|
250 |
+
x = torch.cat(x, dim=0)
|
251 |
+
|
252 |
+
x = self.conv1(x)
|
253 |
+
x = self.norm1(x)
|
254 |
+
x = self.relu1(x)
|
255 |
+
|
256 |
+
x = self.layer1(x)
|
257 |
+
x = self.layer2(x)
|
258 |
+
x = self.layer3(x)
|
259 |
+
|
260 |
+
x = self.conv2(x)
|
261 |
+
|
262 |
+
if self.training and self.dropout is not None:
|
263 |
+
x = self.dropout(x)
|
264 |
+
|
265 |
+
if is_list:
|
266 |
+
x = torch.split(x, [batch_dim, batch_dim], dim=0)
|
267 |
+
|
268 |
+
return x
|
269 |
+
|
270 |
+
class LargeEncoder(nn.Module):
|
271 |
+
def __init__(self, output_dim=128, norm_fn='batch', dropout=0.0):
|
272 |
+
super(LargeEncoder, self).__init__()
|
273 |
+
self.norm_fn = norm_fn
|
274 |
+
|
275 |
+
if self.norm_fn == 'group':
|
276 |
+
self.norm1 = nn.GroupNorm(num_groups=8, num_channels=64)
|
277 |
+
|
278 |
+
elif self.norm_fn == 'batch':
|
279 |
+
self.norm1 = nn.BatchNorm2d(64)
|
280 |
+
|
281 |
+
elif self.norm_fn == 'instance':
|
282 |
+
self.norm1 = nn.InstanceNorm2d(64)
|
283 |
+
|
284 |
+
elif self.norm_fn == 'none':
|
285 |
+
self.norm1 = nn.Sequential()
|
286 |
+
|
287 |
+
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3)
|
288 |
+
self.relu1 = nn.ReLU(inplace=True)
|
289 |
+
|
290 |
+
self.in_planes = 64
|
291 |
+
self.layer1 = self._make_layer(64, stride=1)
|
292 |
+
self.layer2 = self._make_layer(112, stride=2)
|
293 |
+
self.layer3 = self._make_layer(160, stride=2)
|
294 |
+
self.layer3_2 = self._make_layer(160, stride=1)
|
295 |
+
|
296 |
+
# output convolution
|
297 |
+
self.conv2 = nn.Conv2d(self.in_planes, output_dim, kernel_size=1)
|
298 |
+
|
299 |
+
self.dropout = None
|
300 |
+
if dropout > 0:
|
301 |
+
self.dropout = nn.Dropout2d(p=dropout)
|
302 |
+
|
303 |
+
for m in self.modules():
|
304 |
+
if isinstance(m, nn.Conv2d):
|
305 |
+
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
306 |
+
elif isinstance(m, (nn.BatchNorm2d, nn.InstanceNorm2d, nn.GroupNorm)):
|
307 |
+
if m.weight is not None:
|
308 |
+
nn.init.constant_(m.weight, 1)
|
309 |
+
if m.bias is not None:
|
310 |
+
nn.init.constant_(m.bias, 0)
|
311 |
+
|
312 |
+
def _make_layer(self, dim, stride=1):
|
313 |
+
layer1 = ResidualBlock(self.in_planes, dim, self.norm_fn, stride=stride)
|
314 |
+
layer2 = ResidualBlock(dim, dim, self.norm_fn, stride=1)
|
315 |
+
layers = (layer1, layer2)
|
316 |
+
|
317 |
+
self.in_planes = dim
|
318 |
+
return nn.Sequential(*layers)
|
319 |
+
|
320 |
+
|
321 |
+
def forward(self, x):
|
322 |
+
|
323 |
+
# if input is list, combine batch dimension
|
324 |
+
is_list = isinstance(x, tuple) or isinstance(x, list)
|
325 |
+
if is_list:
|
326 |
+
batch_dim = x[0].shape[0]
|
327 |
+
x = torch.cat(x, dim=0)
|
328 |
+
|
329 |
+
x = self.conv1(x)
|
330 |
+
x = self.norm1(x)
|
331 |
+
x = self.relu1(x)
|
332 |
+
|
333 |
+
x = self.layer1(x)
|
334 |
+
x = self.layer2(x)
|
335 |
+
x = self.layer3(x)
|
336 |
+
x = self.layer3_2(x)
|
337 |
+
|
338 |
+
x = self.conv2(x)
|
339 |
+
|
340 |
+
if self.training and self.dropout is not None:
|
341 |
+
x = self.dropout(x)
|
342 |
+
|
343 |
+
if is_list:
|
344 |
+
x = torch.split(x, [batch_dim, batch_dim], dim=0)
|
345 |
+
|
346 |
+
return x
|
networks/blocks/ifrnet.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
This code are partially borrowed from IFRNet (https://github.com/ltkong218/IFRNet).
|
3 |
+
'''
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from utils import warp
|
8 |
+
|
9 |
+
def resize(x, scale_factor):
|
10 |
+
return F.interpolate(x, scale_factor=scale_factor, mode="bilinear", align_corners=False)
|
11 |
+
|
12 |
+
def convrelu(in_channels, out_channels, kernel_size=3, stride=1, padding=1, dilation=1, groups=1, bias=True):
|
13 |
+
return nn.Sequential(
|
14 |
+
nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias=bias),
|
15 |
+
nn.PReLU(out_channels)
|
16 |
+
)
|
17 |
+
|
18 |
+
class ResBlock(nn.Module):
|
19 |
+
def __init__(self, in_channels, side_channels, bias=True):
|
20 |
+
super(ResBlock, self).__init__()
|
21 |
+
self.side_channels = side_channels
|
22 |
+
self.conv1 = nn.Sequential(
|
23 |
+
nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1, bias=bias),
|
24 |
+
nn.PReLU(in_channels)
|
25 |
+
)
|
26 |
+
self.conv2 = nn.Sequential(
|
27 |
+
nn.Conv2d(side_channels, side_channels, kernel_size=3, stride=1, padding=1, bias=bias),
|
28 |
+
nn.PReLU(side_channels)
|
29 |
+
)
|
30 |
+
self.conv3 = nn.Sequential(
|
31 |
+
nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1, bias=bias),
|
32 |
+
nn.PReLU(in_channels)
|
33 |
+
)
|
34 |
+
self.conv4 = nn.Sequential(
|
35 |
+
nn.Conv2d(side_channels, side_channels, kernel_size=3, stride=1, padding=1, bias=bias),
|
36 |
+
nn.PReLU(side_channels)
|
37 |
+
)
|
38 |
+
self.conv5 = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1, bias=bias)
|
39 |
+
self.prelu = nn.PReLU(in_channels)
|
40 |
+
|
41 |
+
def forward(self, x):
|
42 |
+
out = self.conv1(x)
|
43 |
+
|
44 |
+
res_feat = out[:, :-self.side_channels, ...]
|
45 |
+
side_feat = out[:, -self.side_channels:, :, :]
|
46 |
+
side_feat = self.conv2(side_feat)
|
47 |
+
out = self.conv3(torch.cat([res_feat, side_feat], 1))
|
48 |
+
|
49 |
+
res_feat = out[:, :-self.side_channels, ...]
|
50 |
+
side_feat = out[:, -self.side_channels:, :, :]
|
51 |
+
side_feat = self.conv4(side_feat)
|
52 |
+
out = self.conv5(torch.cat([res_feat, side_feat], 1))
|
53 |
+
|
54 |
+
out = self.prelu(x + out)
|
55 |
+
return out
|
56 |
+
|
57 |
+
class Encoder(nn.Module):
|
58 |
+
def __init__(self, channels, large=False):
|
59 |
+
super(Encoder, self).__init__()
|
60 |
+
self.channels = channels
|
61 |
+
prev_ch = 3
|
62 |
+
for idx, ch in enumerate(channels, 1):
|
63 |
+
k = 7 if large and idx == 1 else 3
|
64 |
+
p = 3 if k ==7 else 1
|
65 |
+
self.register_module(f'pyramid{idx}',
|
66 |
+
nn.Sequential(
|
67 |
+
convrelu(prev_ch, ch, k, 2, p),
|
68 |
+
convrelu(ch, ch, 3, 1, 1)
|
69 |
+
))
|
70 |
+
prev_ch = ch
|
71 |
+
|
72 |
+
def forward(self, in_x):
|
73 |
+
fs = []
|
74 |
+
for idx in range(len(self.channels)):
|
75 |
+
out_x = getattr(self, f'pyramid{idx+1}')(in_x)
|
76 |
+
fs.append(out_x)
|
77 |
+
in_x = out_x
|
78 |
+
return fs
|
79 |
+
|
80 |
+
class InitDecoder(nn.Module):
|
81 |
+
def __init__(self, in_ch, out_ch, skip_ch) -> None:
|
82 |
+
super().__init__()
|
83 |
+
self.convblock = nn.Sequential(
|
84 |
+
convrelu(in_ch*2+1, in_ch*2),
|
85 |
+
ResBlock(in_ch*2, skip_ch),
|
86 |
+
nn.ConvTranspose2d(in_ch*2, out_ch+4, 4, 2, 1, bias=True)
|
87 |
+
)
|
88 |
+
def forward(self, f0, f1, embt):
|
89 |
+
h, w = f0.shape[2:]
|
90 |
+
embt = embt.repeat(1, 1, h, w)
|
91 |
+
out = self.convblock(torch.cat([f0, f1, embt], 1))
|
92 |
+
flow0, flow1 = torch.chunk(out[:, :4, ...], 2, 1)
|
93 |
+
ft_ = out[:, 4:, ...]
|
94 |
+
return flow0, flow1, ft_
|
95 |
+
|
96 |
+
class IntermediateDecoder(nn.Module):
|
97 |
+
def __init__(self, in_ch, out_ch, skip_ch) -> None:
|
98 |
+
super().__init__()
|
99 |
+
self.convblock = nn.Sequential(
|
100 |
+
convrelu(in_ch*3+4, in_ch*3),
|
101 |
+
ResBlock(in_ch*3, skip_ch),
|
102 |
+
nn.ConvTranspose2d(in_ch*3, out_ch+4, 4, 2, 1, bias=True)
|
103 |
+
)
|
104 |
+
def forward(self, ft_, f0, f1, flow0_in, flow1_in):
|
105 |
+
f0_warp = warp(f0, flow0_in)
|
106 |
+
f1_warp = warp(f1, flow1_in)
|
107 |
+
f_in = torch.cat([ft_, f0_warp, f1_warp, flow0_in, flow1_in], 1)
|
108 |
+
out = self.convblock(f_in)
|
109 |
+
flow0, flow1 = torch.chunk(out[:, :4, ...], 2, 1)
|
110 |
+
ft_ = out[:, 4:, ...]
|
111 |
+
flow0 = flow0 + 2.0 * resize(flow0_in, scale_factor=2.0)
|
112 |
+
flow1 = flow1 + 2.0 * resize(flow1_in, scale_factor=2.0)
|
113 |
+
return flow0, flow1, ft_
|
networks/blocks/multi_flow.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from utils import warp
|
4 |
+
from networks.blocks.ifrnet import (
|
5 |
+
convrelu, resize,
|
6 |
+
ResBlock,
|
7 |
+
)
|
8 |
+
|
9 |
+
def multi_flow_combine(comb_block, img0, img1, flow0, flow1,
|
10 |
+
mask=None, img_res=None, mean=None):
|
11 |
+
'''
|
12 |
+
A parallel implementation of multiple flow field warping
|
13 |
+
comb_block: A nn.Seqential object.
|
14 |
+
img shape: [b, c, h, w]
|
15 |
+
flow shape: [b, 2*num_flows, h, w]
|
16 |
+
mask (opt):
|
17 |
+
If 'mask' is None, the function conduct a simple average.
|
18 |
+
img_res (opt):
|
19 |
+
If 'img_res' is None, the function adds zero instead.
|
20 |
+
mean (opt):
|
21 |
+
If 'mean' is None, the function adds zero instead.
|
22 |
+
'''
|
23 |
+
b, c, h, w = flow0.shape
|
24 |
+
num_flows = c // 2
|
25 |
+
flow0 = flow0.reshape(b, num_flows, 2, h, w).reshape(-1, 2, h, w)
|
26 |
+
flow1 = flow1.reshape(b, num_flows, 2, h, w).reshape(-1, 2, h, w)
|
27 |
+
|
28 |
+
mask = mask.reshape(b, num_flows, 1, h, w
|
29 |
+
).reshape(-1, 1, h, w) if mask is not None else None
|
30 |
+
img_res = img_res.reshape(b, num_flows, 3, h, w
|
31 |
+
).reshape(-1, 3, h, w) if img_res is not None else 0
|
32 |
+
img0 = torch.stack([img0] * num_flows, 1).reshape(-1, 3, h, w)
|
33 |
+
img1 = torch.stack([img1] * num_flows, 1).reshape(-1, 3, h, w)
|
34 |
+
mean = torch.stack([mean] * num_flows, 1).reshape(-1, 1, 1, 1
|
35 |
+
) if mean is not None else 0
|
36 |
+
|
37 |
+
img0_warp = warp(img0, flow0)
|
38 |
+
img1_warp = warp(img1, flow1)
|
39 |
+
img_warps = mask * img0_warp + (1 - mask) * img1_warp + mean + img_res
|
40 |
+
img_warps = img_warps.reshape(b, num_flows, 3, h, w)
|
41 |
+
imgt_pred = img_warps.mean(1) + comb_block(img_warps.view(b, -1, h, w))
|
42 |
+
return imgt_pred
|
43 |
+
|
44 |
+
class MultiFlowDecoder(nn.Module):
|
45 |
+
def __init__(self, in_ch, skip_ch, num_flows=3):
|
46 |
+
super(MultiFlowDecoder, self).__init__()
|
47 |
+
self.num_flows = num_flows
|
48 |
+
self.convblock = nn.Sequential(
|
49 |
+
convrelu(in_ch*3+4, in_ch*3),
|
50 |
+
ResBlock(in_ch*3, skip_ch),
|
51 |
+
nn.ConvTranspose2d(in_ch*3, 8*num_flows, 4, 2, 1, bias=True)
|
52 |
+
)
|
53 |
+
|
54 |
+
def forward(self, ft_, f0, f1, flow0, flow1):
|
55 |
+
n = self.num_flows
|
56 |
+
f0_warp = warp(f0, flow0)
|
57 |
+
f1_warp = warp(f1, flow1)
|
58 |
+
out = self.convblock(torch.cat([ft_, f0_warp, f1_warp, flow0, flow1], 1))
|
59 |
+
delta_flow0, delta_flow1, mask, img_res = torch.split(out, [2*n, 2*n, n, 3*n], 1)
|
60 |
+
mask = torch.sigmoid(mask)
|
61 |
+
|
62 |
+
flow0 = delta_flow0 + 2.0 * resize(flow0, scale_factor=2.0
|
63 |
+
).repeat(1, self.num_flows, 1, 1)
|
64 |
+
flow1 = delta_flow1 + 2.0 * resize(flow1, scale_factor=2.0
|
65 |
+
).repeat(1, self.num_flows, 1, 1)
|
66 |
+
|
67 |
+
return flow0, flow1, mask, img_res
|
networks/blocks/raft.py
ADDED
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
This code is partially borrowed from RAFT (https://github.com/princeton-vl/RAFT).
|
3 |
+
'''
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
def resize(x, scale_factor):
|
9 |
+
return F.interpolate(x, scale_factor=scale_factor, mode="bilinear", align_corners=False)
|
10 |
+
|
11 |
+
def bilinear_sampler(img, coords, mask=False):
|
12 |
+
""" Wrapper for grid_sample, uses pixel coordinates """
|
13 |
+
H, W = img.shape[-2:]
|
14 |
+
xgrid, ygrid = coords.split([1,1], dim=-1)
|
15 |
+
xgrid = 2*xgrid/(W-1) - 1
|
16 |
+
ygrid = 2*ygrid/(H-1) - 1
|
17 |
+
|
18 |
+
grid = torch.cat([xgrid, ygrid], dim=-1)
|
19 |
+
img = F.grid_sample(img, grid, align_corners=True)
|
20 |
+
|
21 |
+
if mask:
|
22 |
+
mask = (xgrid > -1) & (ygrid > -1) & (xgrid < 1) & (ygrid < 1)
|
23 |
+
return img, mask.float()
|
24 |
+
|
25 |
+
return img
|
26 |
+
|
27 |
+
def coords_grid(batch, ht, wd, device):
|
28 |
+
coords = torch.meshgrid(torch.arange(ht, device=device),
|
29 |
+
torch.arange(wd, device=device),
|
30 |
+
indexing='ij')
|
31 |
+
coords = torch.stack(coords[::-1], dim=0).float()
|
32 |
+
return coords[None].repeat(batch, 1, 1, 1)
|
33 |
+
|
34 |
+
class SmallUpdateBlock(nn.Module):
|
35 |
+
def __init__(self, cdim, hidden_dim, flow_dim, corr_dim, fc_dim,
|
36 |
+
corr_levels=4, radius=3, scale_factor=None):
|
37 |
+
super(SmallUpdateBlock, self).__init__()
|
38 |
+
cor_planes = corr_levels * (2 * radius + 1) **2
|
39 |
+
self.scale_factor = scale_factor
|
40 |
+
|
41 |
+
self.convc1 = nn.Conv2d(2 * cor_planes, corr_dim, 1, padding=0)
|
42 |
+
self.convf1 = nn.Conv2d(4, flow_dim*2, 7, padding=3)
|
43 |
+
self.convf2 = nn.Conv2d(flow_dim*2, flow_dim, 3, padding=1)
|
44 |
+
self.conv = nn.Conv2d(corr_dim+flow_dim, fc_dim, 3, padding=1)
|
45 |
+
|
46 |
+
self.gru = nn.Sequential(
|
47 |
+
nn.Conv2d(fc_dim+4+cdim, hidden_dim, 3, padding=1),
|
48 |
+
nn.LeakyReLU(negative_slope=0.1, inplace=True),
|
49 |
+
nn.Conv2d(hidden_dim, hidden_dim, 3, padding=1),
|
50 |
+
)
|
51 |
+
|
52 |
+
self.feat_head = nn.Sequential(
|
53 |
+
nn.Conv2d(hidden_dim, hidden_dim, 3, padding=1),
|
54 |
+
nn.LeakyReLU(negative_slope=0.1, inplace=True),
|
55 |
+
nn.Conv2d(hidden_dim, cdim, 3, padding=1),
|
56 |
+
)
|
57 |
+
|
58 |
+
self.flow_head = nn.Sequential(
|
59 |
+
nn.Conv2d(hidden_dim, hidden_dim, 3, padding=1),
|
60 |
+
nn.LeakyReLU(negative_slope=0.1, inplace=True),
|
61 |
+
nn.Conv2d(hidden_dim, 4, 3, padding=1),
|
62 |
+
)
|
63 |
+
|
64 |
+
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
|
65 |
+
|
66 |
+
def forward(self, net, flow, corr):
|
67 |
+
net = resize(net, 1 / self.scale_factor
|
68 |
+
) if self.scale_factor is not None else net
|
69 |
+
cor = self.lrelu(self.convc1(corr))
|
70 |
+
flo = self.lrelu(self.convf1(flow))
|
71 |
+
flo = self.lrelu(self.convf2(flo))
|
72 |
+
cor_flo = torch.cat([cor, flo], dim=1)
|
73 |
+
inp = self.lrelu(self.conv(cor_flo))
|
74 |
+
inp = torch.cat([inp, flow, net], dim=1)
|
75 |
+
|
76 |
+
out = self.gru(inp)
|
77 |
+
delta_net = self.feat_head(out)
|
78 |
+
delta_flow = self.flow_head(out)
|
79 |
+
|
80 |
+
if self.scale_factor is not None:
|
81 |
+
delta_net = resize(delta_net, scale_factor=self.scale_factor)
|
82 |
+
delta_flow = self.scale_factor * resize(delta_flow, scale_factor=self.scale_factor)
|
83 |
+
|
84 |
+
return delta_net, delta_flow
|
85 |
+
|
86 |
+
class BasicUpdateBlock(nn.Module):
|
87 |
+
def __init__(self, cdim, hidden_dim, flow_dim, corr_dim, corr_dim2,
|
88 |
+
fc_dim, corr_levels=4, radius=3, scale_factor=None, out_num=1):
|
89 |
+
super(BasicUpdateBlock, self).__init__()
|
90 |
+
cor_planes = corr_levels * (2 * radius + 1) **2
|
91 |
+
|
92 |
+
self.scale_factor = scale_factor
|
93 |
+
self.convc1 = nn.Conv2d(2 * cor_planes, corr_dim, 1, padding=0)
|
94 |
+
self.convc2 = nn.Conv2d(corr_dim, corr_dim2, 3, padding=1)
|
95 |
+
self.convf1 = nn.Conv2d(4, flow_dim*2, 7, padding=3)
|
96 |
+
self.convf2 = nn.Conv2d(flow_dim*2, flow_dim, 3, padding=1)
|
97 |
+
self.conv = nn.Conv2d(flow_dim+corr_dim2, fc_dim, 3, padding=1)
|
98 |
+
|
99 |
+
self.gru = nn.Sequential(
|
100 |
+
nn.Conv2d(fc_dim+4+cdim, hidden_dim, 3, padding=1),
|
101 |
+
nn.LeakyReLU(negative_slope=0.1, inplace=True),
|
102 |
+
nn.Conv2d(hidden_dim, hidden_dim, 3, padding=1),
|
103 |
+
)
|
104 |
+
|
105 |
+
self.feat_head = nn.Sequential(
|
106 |
+
nn.Conv2d(hidden_dim, hidden_dim, 3, padding=1),
|
107 |
+
nn.LeakyReLU(negative_slope=0.1, inplace=True),
|
108 |
+
nn.Conv2d(hidden_dim, cdim, 3, padding=1),
|
109 |
+
)
|
110 |
+
|
111 |
+
self.flow_head = nn.Sequential(
|
112 |
+
nn.Conv2d(hidden_dim, hidden_dim, 3, padding=1),
|
113 |
+
nn.LeakyReLU(negative_slope=0.1, inplace=True),
|
114 |
+
nn.Conv2d(hidden_dim, 4*out_num, 3, padding=1),
|
115 |
+
)
|
116 |
+
|
117 |
+
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
|
118 |
+
|
119 |
+
def forward(self, net, flow, corr):
|
120 |
+
net = resize(net, 1 / self.scale_factor
|
121 |
+
) if self.scale_factor is not None else net
|
122 |
+
cor = self.lrelu(self.convc1(corr))
|
123 |
+
cor = self.lrelu(self.convc2(cor))
|
124 |
+
flo = self.lrelu(self.convf1(flow))
|
125 |
+
flo = self.lrelu(self.convf2(flo))
|
126 |
+
cor_flo = torch.cat([cor, flo], dim=1)
|
127 |
+
inp = self.lrelu(self.conv(cor_flo))
|
128 |
+
inp = torch.cat([inp, flow, net], dim=1)
|
129 |
+
|
130 |
+
out = self.gru(inp)
|
131 |
+
delta_net = self.feat_head(out)
|
132 |
+
delta_flow = self.flow_head(out)
|
133 |
+
|
134 |
+
if self.scale_factor is not None:
|
135 |
+
delta_net = resize(delta_net, scale_factor=self.scale_factor)
|
136 |
+
delta_flow = self.scale_factor * resize(delta_flow, scale_factor=self.scale_factor)
|
137 |
+
return delta_net, delta_flow
|
138 |
+
|
139 |
+
class BidirCorrBlock:
|
140 |
+
def __init__(self, fmap1, fmap2, num_levels=4, radius=4):
|
141 |
+
self.num_levels = num_levels
|
142 |
+
self.radius = radius
|
143 |
+
self.corr_pyramid = []
|
144 |
+
self.corr_pyramid_T = []
|
145 |
+
|
146 |
+
corr = BidirCorrBlock.corr(fmap1, fmap2)
|
147 |
+
batch, h1, w1, dim, h2, w2 = corr.shape
|
148 |
+
corr_T = corr.clone().permute(0, 4, 5, 3, 1, 2)
|
149 |
+
|
150 |
+
corr = corr.reshape(batch*h1*w1, dim, h2, w2)
|
151 |
+
corr_T = corr_T.reshape(batch*h2*w2, dim, h1, w1)
|
152 |
+
|
153 |
+
self.corr_pyramid.append(corr)
|
154 |
+
self.corr_pyramid_T.append(corr_T)
|
155 |
+
|
156 |
+
for _ in range(self.num_levels-1):
|
157 |
+
corr = F.avg_pool2d(corr, 2, stride=2)
|
158 |
+
corr_T = F.avg_pool2d(corr_T, 2, stride=2)
|
159 |
+
self.corr_pyramid.append(corr)
|
160 |
+
self.corr_pyramid_T.append(corr_T)
|
161 |
+
|
162 |
+
def __call__(self, coords0, coords1):
|
163 |
+
r = self.radius
|
164 |
+
coords0 = coords0.permute(0, 2, 3, 1)
|
165 |
+
coords1 = coords1.permute(0, 2, 3, 1)
|
166 |
+
assert coords0.shape == coords1.shape, f"coords0 shape: [{coords0.shape}] is not equal to [{coords1.shape}]"
|
167 |
+
batch, h1, w1, _ = coords0.shape
|
168 |
+
|
169 |
+
out_pyramid = []
|
170 |
+
out_pyramid_T = []
|
171 |
+
for i in range(self.num_levels):
|
172 |
+
corr = self.corr_pyramid[i]
|
173 |
+
corr_T = self.corr_pyramid_T[i]
|
174 |
+
|
175 |
+
dx = torch.linspace(-r, r, 2*r+1, device=coords0.device)
|
176 |
+
dy = torch.linspace(-r, r, 2*r+1, device=coords0.device)
|
177 |
+
delta = torch.stack(torch.meshgrid(dy, dx, indexing='ij'), axis=-1)
|
178 |
+
delta_lvl = delta.view(1, 2*r+1, 2*r+1, 2)
|
179 |
+
|
180 |
+
centroid_lvl_0 = coords0.reshape(batch*h1*w1, 1, 1, 2) / 2**i
|
181 |
+
centroid_lvl_1 = coords1.reshape(batch*h1*w1, 1, 1, 2) / 2**i
|
182 |
+
coords_lvl_0 = centroid_lvl_0 + delta_lvl
|
183 |
+
coords_lvl_1 = centroid_lvl_1 + delta_lvl
|
184 |
+
|
185 |
+
corr = bilinear_sampler(corr, coords_lvl_0)
|
186 |
+
corr_T = bilinear_sampler(corr_T, coords_lvl_1)
|
187 |
+
corr = corr.view(batch, h1, w1, -1)
|
188 |
+
corr_T = corr_T.view(batch, h1, w1, -1)
|
189 |
+
out_pyramid.append(corr)
|
190 |
+
out_pyramid_T.append(corr_T)
|
191 |
+
|
192 |
+
out = torch.cat(out_pyramid, dim=-1)
|
193 |
+
out_T = torch.cat(out_pyramid_T, dim=-1)
|
194 |
+
return out.permute(0, 3, 1, 2).contiguous().float(), out_T.permute(0, 3, 1, 2).contiguous().float()
|
195 |
+
|
196 |
+
@staticmethod
|
197 |
+
def corr(fmap1, fmap2):
|
198 |
+
batch, dim, ht, wd = fmap1.shape
|
199 |
+
fmap1 = fmap1.view(batch, dim, ht*wd)
|
200 |
+
fmap2 = fmap2.view(batch, dim, ht*wd)
|
201 |
+
|
202 |
+
corr = torch.matmul(fmap1.transpose(1,2), fmap2)
|
203 |
+
corr = corr.view(batch, ht, wd, 1, ht, wd)
|
204 |
+
return corr / torch.sqrt(torch.tensor(dim).float())
|
205 |
+
|
206 |
+
|
utils.py
ADDED
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
This code is partially borrowed from IFRNet (https://github.com/ltkong218/IFRNet).
|
3 |
+
'''
|
4 |
+
import re
|
5 |
+
import sys
|
6 |
+
import torch
|
7 |
+
import random
|
8 |
+
import numpy as np
|
9 |
+
from PIL import ImageFile
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from imageio import imread, imwrite
|
12 |
+
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
13 |
+
|
14 |
+
class InputPadder:
|
15 |
+
""" Pads images such that dimensions are divisible by divisor """
|
16 |
+
def __init__(self, dims, divisor=16):
|
17 |
+
self.ht, self.wd = dims[-2:]
|
18 |
+
pad_ht = (((self.ht // divisor) + 1) * divisor - self.ht) % divisor
|
19 |
+
pad_wd = (((self.wd // divisor) + 1) * divisor - self.wd) % divisor
|
20 |
+
self._pad = [pad_wd//2, pad_wd - pad_wd//2, pad_ht//2, pad_ht - pad_ht//2]
|
21 |
+
|
22 |
+
def pad(self, *inputs):
|
23 |
+
if len(inputs) == 1:
|
24 |
+
return F.pad(inputs[0], self._pad, mode='replicate')
|
25 |
+
else:
|
26 |
+
return [F.pad(x, self._pad, mode='replicate') for x in inputs]
|
27 |
+
|
28 |
+
def unpad(self, *inputs):
|
29 |
+
if len(inputs) == 1:
|
30 |
+
return self._unpad(inputs[0])
|
31 |
+
else:
|
32 |
+
return [self._unpad(x) for x in inputs]
|
33 |
+
|
34 |
+
def _unpad(self, x):
|
35 |
+
ht, wd = x.shape[-2:]
|
36 |
+
c = [self._pad[2], ht-self._pad[3], self._pad[0], wd-self._pad[1]]
|
37 |
+
return x[..., c[0]:c[1], c[2]:c[3]]
|
38 |
+
|
39 |
+
def img2tensor(img):
|
40 |
+
return torch.tensor(img).permute(2, 0, 1).unsqueeze(0) / 255.0
|
41 |
+
|
42 |
+
def tensor2img(img_t):
|
43 |
+
return (img_t * 255.).detach(
|
44 |
+
).squeeze(0).permute(1, 2, 0).cpu().numpy(
|
45 |
+
).clip(0, 255).astype(np.uint8)
|
46 |
+
|
47 |
+
|
48 |
+
def read(file):
|
49 |
+
if file.endswith('.float3'): return readFloat(file)
|
50 |
+
elif file.endswith('.flo'): return readFlow(file)
|
51 |
+
elif file.endswith('.ppm'): return readImage(file)
|
52 |
+
elif file.endswith('.pgm'): return readImage(file)
|
53 |
+
elif file.endswith('.png'): return readImage(file)
|
54 |
+
elif file.endswith('.jpg'): return readImage(file)
|
55 |
+
elif file.endswith('.pfm'): return readPFM(file)[0]
|
56 |
+
else: raise Exception('don\'t know how to read %s' % file)
|
57 |
+
|
58 |
+
def write(file, data):
|
59 |
+
if file.endswith('.float3'): return writeFloat(file, data)
|
60 |
+
elif file.endswith('.flo'): return writeFlow(file, data)
|
61 |
+
elif file.endswith('.ppm'): return writeImage(file, data)
|
62 |
+
elif file.endswith('.pgm'): return writeImage(file, data)
|
63 |
+
elif file.endswith('.png'): return writeImage(file, data)
|
64 |
+
elif file.endswith('.jpg'): return writeImage(file, data)
|
65 |
+
elif file.endswith('.pfm'): return writePFM(file, data)
|
66 |
+
else: raise Exception('don\'t know how to write %s' % file)
|
67 |
+
|
68 |
+
def readPFM(file):
|
69 |
+
file = open(file, 'rb')
|
70 |
+
|
71 |
+
color = None
|
72 |
+
width = None
|
73 |
+
height = None
|
74 |
+
scale = None
|
75 |
+
endian = None
|
76 |
+
|
77 |
+
header = file.readline().rstrip()
|
78 |
+
if header.decode("ascii") == 'PF':
|
79 |
+
color = True
|
80 |
+
elif header.decode("ascii") == 'Pf':
|
81 |
+
color = False
|
82 |
+
else:
|
83 |
+
raise Exception('Not a PFM file.')
|
84 |
+
|
85 |
+
dim_match = re.match(r'^(\d+)\s(\d+)\s$', file.readline().decode("ascii"))
|
86 |
+
if dim_match:
|
87 |
+
width, height = list(map(int, dim_match.groups()))
|
88 |
+
else:
|
89 |
+
raise Exception('Malformed PFM header.')
|
90 |
+
|
91 |
+
scale = float(file.readline().decode("ascii").rstrip())
|
92 |
+
if scale < 0:
|
93 |
+
endian = '<'
|
94 |
+
scale = -scale
|
95 |
+
else:
|
96 |
+
endian = '>'
|
97 |
+
|
98 |
+
data = np.fromfile(file, endian + 'f')
|
99 |
+
shape = (height, width, 3) if color else (height, width)
|
100 |
+
|
101 |
+
data = np.reshape(data, shape)
|
102 |
+
data = np.flipud(data)
|
103 |
+
return data, scale
|
104 |
+
|
105 |
+
def writePFM(file, image, scale=1):
|
106 |
+
file = open(file, 'wb')
|
107 |
+
|
108 |
+
color = None
|
109 |
+
|
110 |
+
if image.dtype.name != 'float32':
|
111 |
+
raise Exception('Image dtype must be float32.')
|
112 |
+
|
113 |
+
image = np.flipud(image)
|
114 |
+
|
115 |
+
if len(image.shape) == 3 and image.shape[2] == 3:
|
116 |
+
color = True
|
117 |
+
elif len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1:
|
118 |
+
color = False
|
119 |
+
else:
|
120 |
+
raise Exception('Image must have H x W x 3, H x W x 1 or H x W dimensions.')
|
121 |
+
|
122 |
+
file.write('PF\n' if color else 'Pf\n'.encode())
|
123 |
+
file.write('%d %d\n'.encode() % (image.shape[1], image.shape[0]))
|
124 |
+
|
125 |
+
endian = image.dtype.byteorder
|
126 |
+
|
127 |
+
if endian == '<' or endian == '=' and sys.byteorder == 'little':
|
128 |
+
scale = -scale
|
129 |
+
|
130 |
+
file.write('%f\n'.encode() % scale)
|
131 |
+
|
132 |
+
image.tofile(file)
|
133 |
+
|
134 |
+
def readFlow(name):
|
135 |
+
if name.endswith('.pfm') or name.endswith('.PFM'):
|
136 |
+
return readPFM(name)[0][:,:,0:2]
|
137 |
+
|
138 |
+
f = open(name, 'rb')
|
139 |
+
|
140 |
+
header = f.read(4)
|
141 |
+
if header.decode("utf-8") != 'PIEH':
|
142 |
+
raise Exception('Flow file header does not contain PIEH')
|
143 |
+
|
144 |
+
width = np.fromfile(f, np.int32, 1).squeeze()
|
145 |
+
height = np.fromfile(f, np.int32, 1).squeeze()
|
146 |
+
|
147 |
+
flow = np.fromfile(f, np.float32, width * height * 2).reshape((height, width, 2))
|
148 |
+
|
149 |
+
return flow.astype(np.float32)
|
150 |
+
|
151 |
+
def readImage(name):
|
152 |
+
if name.endswith('.pfm') or name.endswith('.PFM'):
|
153 |
+
data = readPFM(name)[0]
|
154 |
+
if len(data.shape)==3:
|
155 |
+
return data[:,:,0:3]
|
156 |
+
else:
|
157 |
+
return data
|
158 |
+
return imread(name)
|
159 |
+
|
160 |
+
def writeImage(name, data):
|
161 |
+
if name.endswith('.pfm') or name.endswith('.PFM'):
|
162 |
+
return writePFM(name, data, 1)
|
163 |
+
return imwrite(name, data)
|
164 |
+
|
165 |
+
def writeFlow(name, flow):
|
166 |
+
f = open(name, 'wb')
|
167 |
+
f.write('PIEH'.encode('utf-8'))
|
168 |
+
np.array([flow.shape[1], flow.shape[0]], dtype=np.int32).tofile(f)
|
169 |
+
flow = flow.astype(np.float32)
|
170 |
+
flow.tofile(f)
|
171 |
+
|
172 |
+
def readFloat(name):
|
173 |
+
f = open(name, 'rb')
|
174 |
+
|
175 |
+
if(f.readline().decode("utf-8")) != 'float\n':
|
176 |
+
raise Exception('float file %s did not contain <float> keyword' % name)
|
177 |
+
|
178 |
+
dim = int(f.readline())
|
179 |
+
|
180 |
+
dims = []
|
181 |
+
count = 1
|
182 |
+
for i in range(0, dim):
|
183 |
+
d = int(f.readline())
|
184 |
+
dims.append(d)
|
185 |
+
count *= d
|
186 |
+
|
187 |
+
dims = list(reversed(dims))
|
188 |
+
|
189 |
+
data = np.fromfile(f, np.float32, count).reshape(dims)
|
190 |
+
if dim > 2:
|
191 |
+
data = np.transpose(data, (2, 1, 0))
|
192 |
+
data = np.transpose(data, (1, 0, 2))
|
193 |
+
|
194 |
+
return data
|
195 |
+
|
196 |
+
def writeFloat(name, data):
|
197 |
+
f = open(name, 'wb')
|
198 |
+
|
199 |
+
dim=len(data.shape)
|
200 |
+
if dim>3:
|
201 |
+
raise Exception('bad float file dimension: %d' % dim)
|
202 |
+
|
203 |
+
f.write(('float\n').encode('ascii'))
|
204 |
+
f.write(('%d\n' % dim).encode('ascii'))
|
205 |
+
|
206 |
+
if dim == 1:
|
207 |
+
f.write(('%d\n' % data.shape[0]).encode('ascii'))
|
208 |
+
else:
|
209 |
+
f.write(('%d\n' % data.shape[1]).encode('ascii'))
|
210 |
+
f.write(('%d\n' % data.shape[0]).encode('ascii'))
|
211 |
+
for i in range(2, dim):
|
212 |
+
f.write(('%d\n' % data.shape[i]).encode('ascii'))
|
213 |
+
|
214 |
+
data = data.astype(np.float32)
|
215 |
+
if dim==2:
|
216 |
+
data.tofile(f)
|
217 |
+
|
218 |
+
else:
|
219 |
+
np.transpose(data, (2, 0, 1)).tofile(f)
|
220 |
+
|
221 |
+
def warp(img, flow):
|
222 |
+
B, _, H, W = flow.shape
|
223 |
+
xx = torch.linspace(-1.0, 1.0, W).view(1, 1, 1, W).expand(B, -1, H, -1)
|
224 |
+
yy = torch.linspace(-1.0, 1.0, H).view(1, 1, H, 1).expand(B, -1, -1, W)
|
225 |
+
grid = torch.cat([xx, yy], 1).to(img)
|
226 |
+
flow_ = torch.cat([flow[:, 0:1, :, :] / ((W - 1.0) / 2.0), flow[:, 1:2, :, :] / ((H - 1.0) / 2.0)], 1)
|
227 |
+
grid_ = (grid + flow_).permute(0, 2, 3, 1)
|
228 |
+
output = F.grid_sample(input=img, grid=grid_, mode='bilinear', padding_mode='border', align_corners=True)
|
229 |
+
return output
|