Spaces:
Sleeping
Sleeping
File size: 9,454 Bytes
91fad79 0aecf54 91fad79 0aecf54 f601cce 8febad9 9700457 91fad79 8febad9 0aecf54 91fad79 f72c98d 0aecf54 f72c98d 8febad9 91fad79 f72c98d 74ee3b7 0aecf54 8febad9 0aecf54 24d1627 0aecf54 8febad9 f601cce 0d0cdb8 d9fce56 b8d8532 0d0cdb8 0322ea5 54efd71 0322ea5 54efd71 1fb4085 2e855f8 91fad79 2e855f8 8febad9 cc160cc 8febad9 91fad79 2e855f8 f72c98d a941cf4 f72c98d a941cf4 8febad9 f72c98d 8febad9 cc160cc 8febad9 cc160cc 8febad9 80e2c7e 8febad9 74ee3b7 8febad9 74ee3b7 8febad9 74ee3b7 8febad9 2e855f8 91fad79 8febad9 91fad79 2e855f8 91fad79 2e855f8 0aecf54 2e855f8 91fad79 2e855f8 91fad79 0aecf54 91fad79 0aecf54 f72c98d 0aecf54 2e855f8 f72c98d 91fad79 2e855f8 91fad79 2e855f8 8febad9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
import pandas as pd
import json
import gradio as gr
from pathlib import Path
from ragatouille import RAGPretrainedModel
from gradio_client import Client
from tempfile import NamedTemporaryFile
from sentence_transformers import CrossEncoder
import numpy as np
from time import perf_counter
from sentence_transformers import CrossEncoder
from backend.semantic_search import table, retriever
VECTOR_COLUMN_NAME = "vector"
TEXT_COLUMN_NAME = "text"
proj_dir = Path.cwd()
# Set up logging
import logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Replace Mixtral client with Qwen Client
client = Client("Qwen/Qwen1.5-110B-Chat-demo")
def system_instructions(question_difficulty, topic, documents_str):
return f"""<s> [INST] You are a great teacher and your task is to create 10 questions with 4 choices with {question_difficulty} difficulty about the topic request "{topic}" only from the below given documents, {documents_str}. Then create answers. Index in JSON format, the questions as "Q#":"" to "Q#":"", the four choices as "Q#:C1":"" to "Q#:C4":"", and the answers as "A#":"Q#:C#" to "A#":"Q#:C#". Example: 'A10':'Q10:C3' [/INST]"""
# RA
RAG_db = gr.State()
quiz_data = None
def json_to_excel(output_json):
# Initialize list for DataFrame
data = []
gr.Warning('Generating Shareable file link..', duration=30)
for i in range(1, 11): # Assuming there are 10 questions
question_key = f"Q{i}"
answer_key = f"A{i}"
question = output_json.get(question_key, '')
correct_answer_key = output_json.get(answer_key, '')
#correct_answer = correct_answer_key.split(':')[-1] if correct_answer_key else ''
correct_answer = correct_answer_key.split(':')[-1].replace('C', '').strip() if correct_answer_key else ''
# Extract options
option_keys = [f"{question_key}:C{i}" for i in range(1, 6)]
options = [output_json.get(key, '') for key in option_keys]
# Add data row
data.append([
question, # Question Text
"Multiple Choice", # Question Type
options[0], # Option 1
options[1], # Option 2
options[2] if len(options) > 2 else '', # Option 3
options[3] if len(options) > 3 else '', # Option 4
options[4] if len(options) > 4 else '', # Option 5
correct_answer, # Correct Answer
30, # Time in seconds
'' # Image Link
])
# Create DataFrame
df = pd.DataFrame(data, columns=[
"Question Text",
"Question Type",
"Option 1",
"Option 2",
"Option 3",
"Option 4",
"Option 5",
"Correct Answer",
"Time in seconds",
"Image Link"
])
temp_file = NamedTemporaryFile(delete=False, suffix=".xlsx")
df.to_excel(temp_file.name, index=False)
return temp_file.name
# Define a colorful theme
colorful_theme = gr.themes.Default(
primary_hue="cyan", # Set a bright cyan as primary color
secondary_hue="yellow", # Set a bright magenta as secondary color
neutral_hue="purple" # Optionally set a neutral color
)
#with gr.Blocks(title="Quiz Maker", theme=gr.themes.Default(primary_hue="green", secondary_hue="green")) as QUIZBOT:
with gr.Blocks(title="Quiz Maker", theme=colorful_theme) as QUIZBOT:
# Create a single row for the HTML and Image
with gr.Row():
with gr.Column(scale=2):
gr.Image(value='logo.png', height=200, width=200)
with gr.Column(scale=6):
gr.HTML("""
<center>
<h1><span style="color: purple;">ADWITIYA</span> Customs Manual Quizbot</h1>
<h2>Generative AI-powered Capacity building for Training Officers</h2>
<i>⚠️ NACIN Faculties create quiz from any topic dynamically for classroom evaluation after their sessions ! ⚠️</i>
</center>
""")
topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any topic/details from Customs Manual")
with gr.Row():
difficulty_radio = gr.Radio(["easy", "average", "hard"], label="How difficult should the quiz be?")
model_radio = gr.Radio(choices=[ '(ACCURATE) BGE reranker', '(HIGH ACCURATE) ColBERT'],
value='(ACCURATE) BGE reranker', label="Embeddings",
info="First query to ColBERT may take a little time")
generate_quiz_btn = gr.Button("Generate Quiz!🚀")
quiz_msg = gr.Textbox()
question_radios = [gr.Radio(visible=False) for _ in range(10)]
@generate_quiz_btn.click(inputs=[difficulty_radio, topic, model_radio], outputs=[quiz_msg] + question_radios + [gr.File(label="Download Excel")])
def generate_quiz(question_difficulty, topic, cross_encoder):
top_k_rank = 10
documents = []
gr.Warning('Generating Quiz may take 1-2 minutes. Please wait.', duration=60)
if cross_encoder == '(HIGH ACCURATE) ColBERT':
gr.Warning('Retrieving using ColBERT.. First-time query will take 2 minute for model to load.. please wait',duration=100)
RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
RAG_db.value = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
documents_full = RAG_db.value.search(topic, k=top_k_rank)
documents = [item['content'] for item in documents_full]
else:
document_start = perf_counter()
query_vec = retriever.encode(topic)
doc1 = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank)
documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank).to_list()
documents = [doc[TEXT_COLUMN_NAME] for doc in documents]
query_doc_pair = [[topic, doc] for doc in documents]
# if cross_encoder == '(FAST) MiniLM-L6v2':
# cross_encoder1 = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
if cross_encoder == '(ACCURATE) BGE reranker':
cross_encoder1 = CrossEncoder('BAAI/bge-reranker-base')
cross_scores = cross_encoder1.predict(query_doc_pair)
sim_scores_argsort = list(reversed(np.argsort(cross_scores)))
documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]]
formatted_prompt = system_instructions(question_difficulty, topic, '\n'.join(documents))
print(' Formatted Prompt : ' ,formatted_prompt)
try:
response = client.predict(query=formatted_prompt, history=[], system="You are a helpful assistant.", api_name="/model_chat")
response1 = response[1][0][1]
# Extract JSON
start_index = response1.find('{')
end_index = response1.rfind('}')
cleaned_response = response1[start_index:end_index + 1] if start_index != -1 and end_index != -1 else ''
print('Cleaned Response :',cleaned_response)
output_json = json.loads(cleaned_response)
# Assign the extracted JSON to quiz_data for use in the comparison function
global quiz_data
quiz_data = output_json
# Generate the Excel file
excel_file = json_to_excel(output_json)
question_radio_list = []
for question_num in range(1, 11):
question_key = f"Q{question_num}"
answer_key = f"A{question_num}"
question = output_json.get(question_key)
answer = output_json.get(output_json.get(answer_key))
if not question or not answer:
continue
choice_keys = [f"{question_key}:C{i}" for i in range(1, 5)]
choice_list = [output_json.get(choice_key, "Choice not found") for choice_key in choice_keys]
radio = gr.Radio(choices=choice_list, label=question, visible=True, interactive=True)
question_radio_list.append(radio)
return ['Quiz Generated!'] + question_radio_list + [excel_file]
except json.JSONDecodeError as e:
print(f"Failed to decode JSON: {e}")
check_button = gr.Button("Check Score")
score_textbox = gr.Markdown()
@check_button.click(inputs=question_radios, outputs=score_textbox)
def compare_answers(*user_answers):
user_answer_list = list(user_answers)
answers_list = []
for question_num in range(1, 20):
answer_key = f"A{question_num}"
answer = quiz_data.get(quiz_data.get(answer_key))
if not answer:
break
answers_list.append(answer)
score = sum(1 for item in user_answer_list if item in answers_list)
if score > 7:
message = f"### Excellent! You got {score} out of 10!"
elif score > 5:
message = f"### Good! You got {score} out of 10!"
else:
message = f"### You got {score} out of 10! Don't worry. You can prepare well and try better next time!"
return message
QUIZBOT.queue()
QUIZBOT.launch(debug=True)
|