Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -389,21 +389,259 @@
|
|
389 |
|
390 |
# QUIZBOT.queue()
|
391 |
# QUIZBOT.launch(debug=True)
|
392 |
-
##############??????????????????????????????
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
393 |
import pandas as pd
|
394 |
import json
|
395 |
import gradio as gr
|
396 |
from pathlib import Path
|
397 |
from ragatouille import RAGPretrainedModel
|
398 |
from gradio_client import Client
|
399 |
-
from jinja2 import Environment, FileSystemLoader
|
400 |
from tempfile import NamedTemporaryFile
|
|
|
|
|
|
|
401 |
|
402 |
VECTOR_COLUMN_NAME = "vector"
|
403 |
TEXT_COLUMN_NAME = "text"
|
404 |
-
|
405 |
-
|
406 |
-
#
|
407 |
import logging
|
408 |
logging.basicConfig(level=logging.INFO)
|
409 |
logger = logging.getLogger(__name__)
|
@@ -411,15 +649,8 @@ logger = logging.getLogger(__name__)
|
|
411 |
# Replace Mixtral client with Qwen Client
|
412 |
client = Client("Qwen/Qwen1.5-110B-Chat-demo")
|
413 |
|
414 |
-
# Set up the template environment with the templates directory
|
415 |
-
env = Environment(loader=FileSystemLoader(proj_dir / 'templates'))
|
416 |
-
|
417 |
-
# Load the templates directly from the environment
|
418 |
-
template = env.get_template('template.j2')
|
419 |
-
template_html = env.get_template('template_html.j2')
|
420 |
-
|
421 |
def system_instructions(question_difficulty, topic, documents_str):
|
422 |
-
return f"""<s> [INST] You are a great teacher and your task is to create 10 questions with 4 choices with {question_difficulty} difficulty about the topic request "{topic}" only from the below given documents, {documents_str}. Then create answers. Index in JSON format, the questions as "Q#":"" to "Q#":"", the four choices as "Q#:C1":"" to "Q#:C4":"", and the answers as "A#":"Q#:C#" to "A#":"Q#:C#".
|
423 |
|
424 |
# RA
|
425 |
RAG_db = gr.State()
|
@@ -427,7 +658,7 @@ RAG_db = gr.State()
|
|
427 |
def json_to_excel(output_json):
|
428 |
# Initialize list for DataFrame
|
429 |
data = []
|
430 |
-
gr.Warning('Generating Shareable file link..',duration=30)
|
431 |
for i in range(1, 11): # Assuming there are 10 questions
|
432 |
question_key = f"Q{i}"
|
433 |
answer_key = f"A{i}"
|
@@ -467,134 +698,93 @@ def json_to_excel(output_json):
|
|
467 |
"Time in seconds",
|
468 |
"Image Link"
|
469 |
])
|
470 |
-
|
471 |
temp_file = NamedTemporaryFile(delete=False, suffix=".xlsx")
|
472 |
df.to_excel(temp_file.name, index=False)
|
473 |
-
|
474 |
-
# # Save to Excel file
|
475 |
-
# excel_path = proj_dir / "quiz_questions.xlsx"
|
476 |
-
# df.to_excel(str(excel_path), index=False)
|
477 |
return temp_file.name
|
478 |
|
479 |
with gr.Blocks(title="Quiz Maker", theme=gr.themes.Default(primary_hue="green", secondary_hue="green"), css="style.css") as QUIZBOT:
|
480 |
-
def load_model():
|
481 |
-
RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
|
482 |
-
RAG_db.value = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
|
483 |
-
return 'Ready to Go!!'
|
484 |
-
|
485 |
-
with gr.Column(scale=4):
|
486 |
-
gr.HTML("""
|
487 |
-
<center>
|
488 |
-
<h1><span style="color: purple;">ADWITIYA</span> Customs Manual Quizbot</h1>
|
489 |
-
<h2>Generative AI-powered Capacity building for Training Officers</h2>
|
490 |
-
<i>⚠️ NACIN Faculties create quiz from any topic dynamically for classroom evaluation after their sessions ! ⚠️</i>
|
491 |
-
</center>
|
492 |
-
""")
|
493 |
-
|
494 |
-
with gr.Column(scale=2):
|
495 |
-
load_btn = gr.Button("Click to Load!🚀")
|
496 |
-
load_text = gr.Textbox()
|
497 |
-
load_btn.click(load_model, [], load_text)
|
498 |
-
|
499 |
topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any topic/details from Customs Manual")
|
500 |
|
501 |
with gr.Row():
|
502 |
-
|
|
|
|
|
|
|
503 |
|
504 |
generate_quiz_btn = gr.Button("Generate Quiz!🚀")
|
505 |
quiz_msg = gr.Textbox()
|
506 |
|
507 |
question_radios = [gr.Radio(visible=False) for _ in range(10)]
|
508 |
|
509 |
-
|
510 |
-
|
511 |
-
def generate_quiz(question_difficulty, topic):
|
512 |
top_k_rank = 10
|
513 |
-
|
514 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
515 |
|
516 |
-
|
|
|
|
|
517 |
|
518 |
-
|
519 |
-
|
|
|
|
|
|
|
520 |
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
query=formatted_prompt,
|
534 |
-
history=[],
|
535 |
-
system="You are a helpful assistant.",
|
536 |
-
api_name="/model_chat"
|
537 |
-
)
|
538 |
-
print(response)
|
539 |
-
response1 = response[1][0][1]
|
540 |
-
|
541 |
-
# Find the first and last curly braces
|
542 |
-
start_index = response1.find('{')
|
543 |
-
end_index = response1.rfind('}')
|
544 |
-
|
545 |
-
# Extract only the JSON part
|
546 |
-
if start_index != -1 and end_index != -1:
|
547 |
-
cleaned_response = response1[start_index:end_index + 1]
|
548 |
-
|
549 |
-
# Try parsing the cleaned JSON
|
550 |
-
try:
|
551 |
-
output_json = json.loads(cleaned_response)
|
552 |
-
print('Parsed JSON:', output_json)
|
553 |
-
global quiz_data
|
554 |
-
quiz_data = output_json
|
555 |
-
|
556 |
-
# Generate the Excel file
|
557 |
-
excel_file = json_to_excel(output_json)
|
558 |
-
|
559 |
-
for question_num in range(1, 11):
|
560 |
-
question_key = f"Q{question_num}"
|
561 |
-
answer_key = f"A{question_num}"
|
562 |
-
|
563 |
-
question = quiz_data.get(question_key)
|
564 |
-
answer = quiz_data.get(quiz_data.get(answer_key))
|
565 |
-
|
566 |
-
if not question or not answer:
|
567 |
-
continue
|
568 |
-
|
569 |
-
choice_keys = [f"{question_key}:C{i}" for i in range(1, 5)]
|
570 |
-
choice_list = [quiz_data.get(choice_key, "Choice not found") for choice_key in choice_keys]
|
571 |
-
|
572 |
-
radio = gr.Radio(choices=choice_list, label=question, visible=True, interactive=True)
|
573 |
-
question_radio_list.append(radio)
|
574 |
-
print('question_radio_list', question_radio_list)
|
575 |
-
|
576 |
-
if len(question_radio_list) == 10:
|
577 |
-
break
|
578 |
-
else:
|
579 |
-
print('10 questions not generated. Trying again!')
|
580 |
-
count += 1
|
581 |
-
continue
|
582 |
-
except json.JSONDecodeError as e:
|
583 |
-
print(f"Failed to decode JSON: {e}")
|
584 |
-
else:
|
585 |
-
print("No valid JSON found in the response.")
|
586 |
-
|
587 |
-
except Exception as e:
|
588 |
-
count += 1
|
589 |
-
print(f"Exception occurred: {e}")
|
590 |
-
if count == 3:
|
591 |
-
print('Retry exhausted')
|
592 |
-
gr.Warning('Sorry. Please try with another topic!')
|
593 |
-
else:
|
594 |
-
print(f"Trying again.. {count} time... please wait")
|
595 |
continue
|
596 |
|
597 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
598 |
|
599 |
check_button = gr.Button("Check Score")
|
600 |
score_textbox = gr.Markdown()
|
@@ -624,3 +814,4 @@ with gr.Blocks(title="Quiz Maker", theme=gr.themes.Default(primary_hue="green",
|
|
624 |
|
625 |
QUIZBOT.queue()
|
626 |
QUIZBOT.launch(debug=True)
|
|
|
|
389 |
|
390 |
# QUIZBOT.queue()
|
391 |
# QUIZBOT.launch(debug=True)
|
392 |
+
# ##############??????????????????????????????
|
393 |
+
# import pandas as pd
|
394 |
+
# import json
|
395 |
+
# import gradio as gr
|
396 |
+
# from pathlib import Path
|
397 |
+
# from ragatouille import RAGPretrainedModel
|
398 |
+
# from gradio_client import Client
|
399 |
+
# from jinja2 import Environment, FileSystemLoader
|
400 |
+
# from tempfile import NamedTemporaryFile
|
401 |
+
|
402 |
+
# VECTOR_COLUMN_NAME = "vector"
|
403 |
+
# TEXT_COLUMN_NAME = "text"
|
404 |
+
# #proj_dir = Path(__file__).parent
|
405 |
+
# proj_dir = Path.cwd()
|
406 |
+
# # Setting up the logging
|
407 |
+
# import logging
|
408 |
+
# logging.basicConfig(level=logging.INFO)
|
409 |
+
# logger = logging.getLogger(__name__)
|
410 |
+
|
411 |
+
# # Replace Mixtral client with Qwen Client
|
412 |
+
# client = Client("Qwen/Qwen1.5-110B-Chat-demo")
|
413 |
+
|
414 |
+
# # Set up the template environment with the templates directory
|
415 |
+
# env = Environment(loader=FileSystemLoader(proj_dir / 'templates'))
|
416 |
+
|
417 |
+
# # Load the templates directly from the environment
|
418 |
+
# template = env.get_template('template.j2')
|
419 |
+
# template_html = env.get_template('template_html.j2')
|
420 |
+
|
421 |
+
# def system_instructions(question_difficulty, topic, documents_str):
|
422 |
+
# return f"""<s> [INST] You are a great teacher and your task is to create 10 questions with 4 choices with {question_difficulty} difficulty about the topic request "{topic}" only from the below given documents, {documents_str}. Then create answers. Index in JSON format, the questions as "Q#":"" to "Q#":"", the four choices as "Q#:C1":"" to "Q#:C4":"", and the answers as "A#":"Q#:C#" to "A#":"Q#:C#". example is 'A10':'Q10:C3' [/INST]"""
|
423 |
+
|
424 |
+
# # RA
|
425 |
+
# RAG_db = gr.State()
|
426 |
+
|
427 |
+
# def json_to_excel(output_json):
|
428 |
+
# # Initialize list for DataFrame
|
429 |
+
# data = []
|
430 |
+
# gr.Warning('Generating Shareable file link..',duration=30)
|
431 |
+
# for i in range(1, 11): # Assuming there are 10 questions
|
432 |
+
# question_key = f"Q{i}"
|
433 |
+
# answer_key = f"A{i}"
|
434 |
+
|
435 |
+
# question = output_json.get(question_key, '')
|
436 |
+
# correct_answer_key = output_json.get(answer_key, '')
|
437 |
+
# correct_answer = correct_answer_key.split(':')[-1] if correct_answer_key else ''
|
438 |
+
|
439 |
+
# # Extract options
|
440 |
+
# option_keys = [f"{question_key}:C{i}" for i in range(1, 6)]
|
441 |
+
# options = [output_json.get(key, '') for key in option_keys]
|
442 |
+
|
443 |
+
# # Add data row
|
444 |
+
# data.append([
|
445 |
+
# question, # Question Text
|
446 |
+
# "Multiple Choice", # Question Type
|
447 |
+
# options[0], # Option 1
|
448 |
+
# options[1], # Option 2
|
449 |
+
# options[2] if len(options) > 2 else '', # Option 3
|
450 |
+
# options[3] if len(options) > 3 else '', # Option 4
|
451 |
+
# options[4] if len(options) > 4 else '', # Option 5
|
452 |
+
# correct_answer, # Correct Answer
|
453 |
+
# 30, # Time in seconds
|
454 |
+
# '' # Image Link
|
455 |
+
# ])
|
456 |
+
|
457 |
+
# # Create DataFrame
|
458 |
+
# df = pd.DataFrame(data, columns=[
|
459 |
+
# "Question Text",
|
460 |
+
# "Question Type",
|
461 |
+
# "Option 1",
|
462 |
+
# "Option 2",
|
463 |
+
# "Option 3",
|
464 |
+
# "Option 4",
|
465 |
+
# "Option 5",
|
466 |
+
# "Correct Answer",
|
467 |
+
# "Time in seconds",
|
468 |
+
# "Image Link"
|
469 |
+
# ])
|
470 |
+
# # Create a temporary file and save the DataFrame to it
|
471 |
+
# temp_file = NamedTemporaryFile(delete=False, suffix=".xlsx")
|
472 |
+
# df.to_excel(temp_file.name, index=False)
|
473 |
+
|
474 |
+
# # # Save to Excel file
|
475 |
+
# # excel_path = proj_dir / "quiz_questions.xlsx"
|
476 |
+
# # df.to_excel(str(excel_path), index=False)
|
477 |
+
# return temp_file.name
|
478 |
+
|
479 |
+
# with gr.Blocks(title="Quiz Maker", theme=gr.themes.Default(primary_hue="green", secondary_hue="green"), css="style.css") as QUIZBOT:
|
480 |
+
# def load_model():
|
481 |
+
# RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
|
482 |
+
# RAG_db.value = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
|
483 |
+
# return 'Ready to Go!!'
|
484 |
+
|
485 |
+
# with gr.Column(scale=4):
|
486 |
+
# gr.HTML("""
|
487 |
+
# <center>
|
488 |
+
# <h1><span style="color: purple;">ADWITIYA</span> Customs Manual Quizbot</h1>
|
489 |
+
# <h2>Generative AI-powered Capacity building for Training Officers</h2>
|
490 |
+
# <i>⚠️ NACIN Faculties create quiz from any topic dynamically for classroom evaluation after their sessions ! ⚠️</i>
|
491 |
+
# </center>
|
492 |
+
# """)
|
493 |
+
|
494 |
+
# with gr.Column(scale=2):
|
495 |
+
# load_btn = gr.Button("Click to Load!🚀")
|
496 |
+
# load_text = gr.Textbox()
|
497 |
+
# load_btn.click(load_model, [], load_text)
|
498 |
+
|
499 |
+
# topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any topic/details from Customs Manual")
|
500 |
+
|
501 |
+
# with gr.Row():
|
502 |
+
# radio = gr.Radio(["easy", "average", "hard"], label="How difficult should the quiz be?")
|
503 |
+
|
504 |
+
# generate_quiz_btn = gr.Button("Generate Quiz!🚀")
|
505 |
+
# quiz_msg = gr.Textbox()
|
506 |
+
|
507 |
+
# question_radios = [gr.Radio(visible=False) for _ in range(10)]
|
508 |
+
|
509 |
+
# #@gr.dependencies.GPU
|
510 |
+
# @generate_quiz_btn.click(inputs=[radio, topic], outputs=[quiz_msg] + question_radios + [gr.File(label="Download Excel")], api_name="generate_quiz")
|
511 |
+
# def generate_quiz(question_difficulty, topic):
|
512 |
+
# top_k_rank = 10
|
513 |
+
# RAG_db_ = RAG_db.value
|
514 |
+
# documents_full = RAG_db_.search(topic, k=top_k_rank)
|
515 |
+
|
516 |
+
# gr.Warning('Generation of Quiz may take 1 to 2 minutes. Please wait.',duration=60)
|
517 |
+
|
518 |
+
# question_radio_list = []
|
519 |
+
# excel_file = None
|
520 |
+
|
521 |
+
# count = 0
|
522 |
+
# while count <= 3:
|
523 |
+
# try:
|
524 |
+
# documents = [item['content'] for item in documents_full]
|
525 |
+
# document_summaries = [f"[DOCUMENT {i + 1}]: {summary}{count}" for i, summary in enumerate(documents)]
|
526 |
+
# documents_str = '\n'.join(document_summaries)
|
527 |
+
# formatted_prompt = system_instructions(question_difficulty, topic, documents_str)
|
528 |
+
|
529 |
+
# print(formatted_prompt)
|
530 |
+
|
531 |
+
# # Use Qwen Client for quiz generation
|
532 |
+
# response = client.predict(
|
533 |
+
# query=formatted_prompt,
|
534 |
+
# history=[],
|
535 |
+
# system="You are a helpful assistant.",
|
536 |
+
# api_name="/model_chat"
|
537 |
+
# )
|
538 |
+
# print(response)
|
539 |
+
# response1 = response[1][0][1]
|
540 |
+
|
541 |
+
# # Find the first and last curly braces
|
542 |
+
# start_index = response1.find('{')
|
543 |
+
# end_index = response1.rfind('}')
|
544 |
+
|
545 |
+
# # Extract only the JSON part
|
546 |
+
# if start_index != -1 and end_index != -1:
|
547 |
+
# cleaned_response = response1[start_index:end_index + 1]
|
548 |
+
|
549 |
+
# # Try parsing the cleaned JSON
|
550 |
+
# try:
|
551 |
+
# output_json = json.loads(cleaned_response)
|
552 |
+
# print('Parsed JSON:', output_json)
|
553 |
+
# global quiz_data
|
554 |
+
# quiz_data = output_json
|
555 |
+
|
556 |
+
# # Generate the Excel file
|
557 |
+
# excel_file = json_to_excel(output_json)
|
558 |
+
|
559 |
+
# for question_num in range(1, 11):
|
560 |
+
# question_key = f"Q{question_num}"
|
561 |
+
# answer_key = f"A{question_num}"
|
562 |
+
|
563 |
+
# question = quiz_data.get(question_key)
|
564 |
+
# answer = quiz_data.get(quiz_data.get(answer_key))
|
565 |
+
|
566 |
+
# if not question or not answer:
|
567 |
+
# continue
|
568 |
+
|
569 |
+
# choice_keys = [f"{question_key}:C{i}" for i in range(1, 5)]
|
570 |
+
# choice_list = [quiz_data.get(choice_key, "Choice not found") for choice_key in choice_keys]
|
571 |
+
|
572 |
+
# radio = gr.Radio(choices=choice_list, label=question, visible=True, interactive=True)
|
573 |
+
# question_radio_list.append(radio)
|
574 |
+
# print('question_radio_list', question_radio_list)
|
575 |
+
|
576 |
+
# if len(question_radio_list) == 10:
|
577 |
+
# break
|
578 |
+
# else:
|
579 |
+
# print('10 questions not generated. Trying again!')
|
580 |
+
# count += 1
|
581 |
+
# continue
|
582 |
+
# except json.JSONDecodeError as e:
|
583 |
+
# print(f"Failed to decode JSON: {e}")
|
584 |
+
# else:
|
585 |
+
# print("No valid JSON found in the response.")
|
586 |
+
|
587 |
+
# except Exception as e:
|
588 |
+
# count += 1
|
589 |
+
# print(f"Exception occurred: {e}")
|
590 |
+
# if count == 3:
|
591 |
+
# print('Retry exhausted')
|
592 |
+
# gr.Warning('Sorry. Please try with another topic!')
|
593 |
+
# else:
|
594 |
+
# print(f"Trying again.. {count} time... please wait")
|
595 |
+
# continue
|
596 |
+
|
597 |
+
# return ['Quiz Generated!'] + question_radio_list + [excel_file]
|
598 |
+
|
599 |
+
# check_button = gr.Button("Check Score")
|
600 |
+
# score_textbox = gr.Markdown()
|
601 |
+
|
602 |
+
# @check_button.click(inputs=question_radios, outputs=score_textbox)
|
603 |
+
# def compare_answers(*user_answers):
|
604 |
+
# user_answer_list = list(user_answers)
|
605 |
+
# answers_list = []
|
606 |
+
|
607 |
+
# for question_num in range(1, 20):
|
608 |
+
# answer_key = f"A{question_num}"
|
609 |
+
# answer = quiz_data.get(quiz_data.get(answer_key))
|
610 |
+
# if not answer:
|
611 |
+
# break
|
612 |
+
# answers_list.append(answer)
|
613 |
+
|
614 |
+
# score = sum(1 for item in user_answer_list if item in answers_list)
|
615 |
+
|
616 |
+
# if score > 7:
|
617 |
+
# message = f"### Excellent! You got {score} out of 10!"
|
618 |
+
# elif score > 5:
|
619 |
+
# message = f"### Good! You got {score} out of 10!"
|
620 |
+
# else:
|
621 |
+
# message = f"### You got {score} out of 10! Don't worry. You can prepare well and try better next time!"
|
622 |
+
|
623 |
+
# return message
|
624 |
+
|
625 |
+
# QUIZBOT.queue()
|
626 |
+
# QUIZBOT.launch(debug=True)
|
627 |
+
|
628 |
+
#?????????????????????????????????
|
629 |
import pandas as pd
|
630 |
import json
|
631 |
import gradio as gr
|
632 |
from pathlib import Path
|
633 |
from ragatouille import RAGPretrainedModel
|
634 |
from gradio_client import Client
|
|
|
635 |
from tempfile import NamedTemporaryFile
|
636 |
+
from sentence_transformers import CrossEncoder
|
637 |
+
import numpy as np
|
638 |
+
from time import perf_counter
|
639 |
|
640 |
VECTOR_COLUMN_NAME = "vector"
|
641 |
TEXT_COLUMN_NAME = "text"
|
642 |
+
proj_dir = Path.cwd()
|
643 |
+
|
644 |
+
# Set up logging
|
645 |
import logging
|
646 |
logging.basicConfig(level=logging.INFO)
|
647 |
logger = logging.getLogger(__name__)
|
|
|
649 |
# Replace Mixtral client with Qwen Client
|
650 |
client = Client("Qwen/Qwen1.5-110B-Chat-demo")
|
651 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
652 |
def system_instructions(question_difficulty, topic, documents_str):
|
653 |
+
return f"""<s> [INST] You are a great teacher and your task is to create 10 questions with 4 choices with {question_difficulty} difficulty about the topic request "{topic}" only from the below given documents, {documents_str}. Then create answers. Index in JSON format, the questions as "Q#":"" to "Q#":"", the four choices as "Q#:C1":"" to "Q#:C4":"", and the answers as "A#":"Q#:C#" to "A#":"Q#:C#". Example: 'A10':'Q10:C3' [/INST]"""
|
654 |
|
655 |
# RA
|
656 |
RAG_db = gr.State()
|
|
|
658 |
def json_to_excel(output_json):
|
659 |
# Initialize list for DataFrame
|
660 |
data = []
|
661 |
+
gr.Warning('Generating Shareable file link..', duration=30)
|
662 |
for i in range(1, 11): # Assuming there are 10 questions
|
663 |
question_key = f"Q{i}"
|
664 |
answer_key = f"A{i}"
|
|
|
698 |
"Time in seconds",
|
699 |
"Image Link"
|
700 |
])
|
701 |
+
|
702 |
temp_file = NamedTemporaryFile(delete=False, suffix=".xlsx")
|
703 |
df.to_excel(temp_file.name, index=False)
|
|
|
|
|
|
|
|
|
704 |
return temp_file.name
|
705 |
|
706 |
with gr.Blocks(title="Quiz Maker", theme=gr.themes.Default(primary_hue="green", secondary_hue="green"), css="style.css") as QUIZBOT:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
707 |
topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any topic/details from Customs Manual")
|
708 |
|
709 |
with gr.Row():
|
710 |
+
difficulty_radio = gr.Radio(["easy", "average", "hard"], label="How difficult should the quiz be?")
|
711 |
+
model_radio = gr.Radio(choices=['(FAST) MiniLM-L6v2', '(ACCURATE) BGE reranker', '(HIGH ACCURATE) ColBERT'],
|
712 |
+
value='(ACCURATE) BGE reranker', label="Embeddings",
|
713 |
+
info="First query to ColBERT may take a little time")
|
714 |
|
715 |
generate_quiz_btn = gr.Button("Generate Quiz!🚀")
|
716 |
quiz_msg = gr.Textbox()
|
717 |
|
718 |
question_radios = [gr.Radio(visible=False) for _ in range(10)]
|
719 |
|
720 |
+
@generate_quiz_btn.click(inputs=[difficulty_radio, topic, model_radio], outputs=[quiz_msg] + question_radios + [gr.File(label="Download Excel")])
|
721 |
+
def generate_quiz(question_difficulty, topic, cross_encoder):
|
|
|
722 |
top_k_rank = 10
|
723 |
+
documents = []
|
724 |
+
gr.Warning('Generating Quiz may take 1-2 minutes. Please wait.', duration=60)
|
725 |
+
|
726 |
+
if cross_encoder == '(HIGH ACCURATE) ColBERT':
|
727 |
+
gr.Warning('Retrieving using ColBERT.. First-time query will take a minute for model to load.. please wait')
|
728 |
+
RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
|
729 |
+
RAG_db.value = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
|
730 |
+
documents_full = RAG_db.value.search(topic, k=top_k_rank)
|
731 |
+
documents = [item['content'] for item in documents_full]
|
732 |
+
|
733 |
+
else:
|
734 |
+
document_start = perf_counter()
|
735 |
+
query_vec = retriever.encode(topic)
|
736 |
+
doc1 = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank)
|
737 |
+
|
738 |
+
documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank).to_list()
|
739 |
+
documents = [doc[TEXT_COLUMN_NAME] for doc in documents]
|
740 |
+
|
741 |
+
query_doc_pair = [[topic, doc] for doc in documents]
|
742 |
+
|
743 |
+
if cross_encoder == '(FAST) MiniLM-L6v2':
|
744 |
+
cross_encoder1 = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
|
745 |
+
elif cross_encoder == '(ACCURATE) BGE reranker':
|
746 |
+
cross_encoder1 = CrossEncoder('BAAI/bge-reranker-base')
|
747 |
+
|
748 |
+
cross_scores = cross_encoder1.predict(query_doc_pair)
|
749 |
+
sim_scores_argsort = list(reversed(np.argsort(cross_scores)))
|
750 |
+
documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]]
|
751 |
+
|
752 |
+
formatted_prompt = system_instructions(question_difficulty, topic, '\n'.join(documents))
|
753 |
|
754 |
+
try:
|
755 |
+
response = client.predict(query=formatted_prompt, history=[], system="You are a helpful assistant.", api_name="/model_chat")
|
756 |
+
response1 = response[1][0][1]
|
757 |
|
758 |
+
# Extract JSON
|
759 |
+
start_index = response1.find('{')
|
760 |
+
end_index = response1.rfind('}')
|
761 |
+
cleaned_response = response1[start_index:end_index + 1] if start_index != -1 and end_index != -1 else ''
|
762 |
+
output_json = json.loads(cleaned_response)
|
763 |
|
764 |
+
# Generate the Excel file
|
765 |
+
excel_file = json_to_excel(output_json)
|
766 |
+
|
767 |
+
question_radio_list = []
|
768 |
+
for question_num in range(1, 11):
|
769 |
+
question_key = f"Q{question_num}"
|
770 |
+
answer_key = f"A{question_num}"
|
771 |
+
|
772 |
+
question = output_json.get(question_key)
|
773 |
+
answer = output_json.get(output_json.get(answer_key))
|
774 |
+
|
775 |
+
if not question or not answer:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
776 |
continue
|
777 |
|
778 |
+
choice_keys = [f"{question_key}:C{i}" for i in range(1, 5)]
|
779 |
+
choice_list = [output_json.get(choice_key, "Choice not found") for choice_key in choice_keys]
|
780 |
+
|
781 |
+
radio = gr.Radio(choices=choice_list, label=question, visible=True, interactive=True)
|
782 |
+
question_radio_list.append(radio)
|
783 |
+
|
784 |
+
return ['Quiz Generated!'] + question_radio_list + [excel_file]
|
785 |
+
|
786 |
+
except json.JSONDecodeError as e:
|
787 |
+
print(f"Failed to decode JSON: {e}")
|
788 |
|
789 |
check_button = gr.Button("Check Score")
|
790 |
score_textbox = gr.Markdown()
|
|
|
814 |
|
815 |
QUIZBOT.queue()
|
816 |
QUIZBOT.launch(debug=True)
|
817 |
+
|