Files changed (1) hide show
  1. app.py +0 -214
app.py DELETED
@@ -1,214 +0,0 @@
1
- import gradio as gr
2
- import os
3
- api_token = os.getenv("HF_TOKEN")
4
-
5
- from langchain_community.vectorstores import FAISS
6
- from langchain_community.document_loaders import PyPDFLoader
7
- from langchain.text_splitter import RecursiveCharacterTextSplitter
8
- from langchain_community.vectorstores import Chroma
9
- from langchain.chains import ConversationalRetrievalChain
10
- from langchain_community.embeddings import HuggingFaceEmbeddings
11
- from langchain_community.llms import HuggingFacePipeline
12
- from langchain.chains import ConversationChain
13
- from langchain.memory import ConversationBufferMemory
14
- from langchain_community.llms import HuggingFaceEndpoint
15
- import torch
16
-
17
- list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2"]
18
- list_llm_simple = [os.path.basename(llm) for llm in list_llm]
19
-
20
- # Load and split PDF document
21
- def load_doc(list_file_path):
22
- # Processing for one document only
23
- # loader = PyPDFLoader(file_path)
24
- # pages = loader.load()
25
- loaders = [PyPDFLoader(x) for x in list_file_path]
26
- pages = []
27
- for loader in loaders:
28
- pages.extend(loader.load())
29
- text_splitter = RecursiveCharacterTextSplitter(
30
- chunk_size = 1024,
31
- chunk_overlap = 64
32
- )
33
- doc_splits = text_splitter.split_documents(pages)
34
- return doc_splits
35
-
36
- # Create vector database
37
- def create_db(splits):
38
- embeddings = HuggingFaceEmbeddings()
39
- vectordb = FAISS.from_documents(splits, embeddings)
40
- return vectordb
41
-
42
-
43
- # Initialize langchain LLM chain
44
- def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
45
- if llm_model == "meta-llama/Meta-Llama-3-8B-Instruct":
46
- llm = HuggingFaceEndpoint(
47
- repo_id=llm_model,
48
- huggingfacehub_api_token = api_token,
49
- temperature = temperature,
50
- max_new_tokens = max_tokens,
51
- top_k = top_k,
52
- )
53
- else:
54
- llm = HuggingFaceEndpoint(
55
- huggingfacehub_api_token = api_token,
56
- repo_id=llm_model,
57
- temperature = temperature,
58
- max_new_tokens = max_tokens,
59
- top_k = top_k,
60
- )
61
-
62
- memory = ConversationBufferMemory(
63
- memory_key="chat_history",
64
- output_key='answer',
65
- return_messages=True
66
- )
67
-
68
- retriever=vector_db.as_retriever()
69
- qa_chain = ConversationalRetrievalChain.from_llm(
70
- llm,
71
- retriever=retriever,
72
- chain_type="stuff",
73
- memory=memory,
74
- return_source_documents=True,
75
- verbose=False,
76
- )
77
- return qa_chain
78
-
79
- # Initialize database
80
- def initialize_database(list_file_obj, progress=gr.Progress()):
81
- # Create a list of documents (when valid)
82
- list_file_path = [x.name for x in list_file_obj if x is not None]
83
- # Load document and create splits
84
- doc_splits = load_doc(list_file_path)
85
- # Create or load vector database
86
- vector_db = create_db(doc_splits)
87
- return vector_db, "Database created!"
88
-
89
- # Initialize LLM
90
- def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
91
- # print("llm_option",llm_option)
92
- llm_name = list_llm[llm_option]
93
- print("llm_name: ",llm_name)
94
- qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
95
- return qa_chain, "QA chain initialized. Chatbot is ready!"
96
-
97
-
98
- def format_chat_history(message, chat_history):
99
- formatted_chat_history = []
100
- for user_message, bot_message in chat_history:
101
- formatted_chat_history.append(f"User: {user_message}")
102
- formatted_chat_history.append(f"Assistant: {bot_message}")
103
- return formatted_chat_history
104
-
105
-
106
- def conversation(qa_chain, message, history):
107
- formatted_chat_history = format_chat_history(message, history)
108
- # Generate response using QA chain
109
- response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history})
110
- response_answer = response["answer"]
111
- if response_answer.find("Helpful Answer:") != -1:
112
- response_answer = response_answer.split("Helpful Answer:")[-1]
113
- response_sources = response["source_documents"]
114
- response_source1 = response_sources[0].page_content.strip()
115
- response_source2 = response_sources[1].page_content.strip()
116
- response_source3 = response_sources[2].page_content.strip()
117
- # Langchain sources are zero-based
118
- response_source1_page = response_sources[0].metadata["page"] + 1
119
- response_source2_page = response_sources[1].metadata["page"] + 1
120
- response_source3_page = response_sources[2].metadata["page"] + 1
121
- # Append user message and response to chat history
122
- new_history = history + [(message, response_answer)]
123
- return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
124
-
125
-
126
- def upload_file(file_obj):
127
- list_file_path = []
128
- for idx, file in enumerate(file_obj):
129
- file_path = file_obj.name
130
- list_file_path.append(file_path)
131
- return list_file_path
132
-
133
-
134
- def demo():
135
- with gr.Blocks(theme=gr.themes.Default(primary_hue="sky")) as demo:
136
- vector_db = gr.State()
137
- qa_chain = gr.State()
138
- gr.HTML("<center><h1>RAG PDF chatbot</h1><center>")
139
- gr.Markdown("""<b>Query your PDF documents!</b> This AI agent is designed to perform retrieval augmented generation (RAG) on PDF documents. The app is hosted on Hugging Face Hub for the sole purpose of demonstration. \
140
- <b>Please do not upload confidential documents.</b>
141
- """)
142
- with gr.Row():
143
- with gr.Column(scale = 86):
144
- gr.Markdown("<b>Step 1 - Upload PDF documents and Initialize RAG pipeline</b>")
145
- with gr.Row():
146
- document = gr.Files(height=300, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload PDF documents")
147
- with gr.Row():
148
- db_btn = gr.Button("Create vector database")
149
- with gr.Row():
150
- db_progress = gr.Textbox(value="Not initialized", show_label=False) # label="Vector database status",
151
- gr.Markdown("<style>body { font-size: 16px; }</style><b>Select Large Language Model (LLM) and input parameters</b>")
152
- with gr.Row():
153
- llm_btn = gr.Radio(list_llm_simple, label="Available LLMs", value = list_llm_simple[0], type="index") # info="Select LLM", show_label=False
154
- with gr.Row():
155
- with gr.Accordion("LLM input parameters", open=False):
156
- with gr.Row():
157
- slider_temperature = gr.Slider(minimum = 0.01, maximum = 1.0, value=0.5, step=0.1, label="Temperature", info="Controls randomness in token generation", interactive=True)
158
- with gr.Row():
159
- slider_maxtokens = gr.Slider(minimum = 128, maximum = 9192, value=4096, step=128, label="Max New Tokens", info="Maximum number of tokens to be generated",interactive=True)
160
- with gr.Row():
161
- slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k", info="Number of tokens to select the next token from", interactive=True)
162
- with gr.Row():
163
- qachain_btn = gr.Button("Initialize Question Answering Chatbot")
164
- with gr.Row():
165
- llm_progress = gr.Textbox(value="Not initialized", show_label=False) # label="Chatbot status",
166
-
167
- with gr.Column(scale = 200):
168
- gr.Markdown("<b>Step 2 - Chat with your Document</b>")
169
- chatbot = gr.Chatbot(height=505)
170
- with gr.Accordion("Relevent context from the source document", open=False):
171
- with gr.Row():
172
- doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
173
- source1_page = gr.Number(label="Page", scale=1)
174
- with gr.Row():
175
- doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
176
- source2_page = gr.Number(label="Page", scale=1)
177
- with gr.Row():
178
- doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
179
- source3_page = gr.Number(label="Page", scale=1)
180
- with gr.Row():
181
- msg = gr.Textbox(placeholder="Ask a question", container=True)
182
- with gr.Row():
183
- submit_btn = gr.Button("Submit")
184
- clear_btn = gr.ClearButton([msg, chatbot], value="Clear")
185
-
186
- # Preprocessing events
187
- db_btn.click(initialize_database, \
188
- inputs=[document], \
189
- outputs=[vector_db, db_progress])
190
- qachain_btn.click(initialize_LLM, \
191
- inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], \
192
- outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], \
193
- inputs=None, \
194
- outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
195
- queue=False)
196
-
197
- # Chatbot events
198
- msg.submit(conversation, \
199
- inputs=[qa_chain, msg, chatbot], \
200
- outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
201
- queue=False)
202
- submit_btn.click(conversation, \
203
- inputs=[qa_chain, msg, chatbot], \
204
- outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
205
- queue=False)
206
- clear_btn.click(lambda:[None,"",0,"",0,"",0], \
207
- inputs=None, \
208
- outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
209
- queue=False)
210
- demo.queue().launch(debug=True)
211
-
212
-
213
- if __name__ == "__main__":
214
- demo()