|
import torch |
|
from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL |
|
from PIL import Image |
|
from ip_adapter.ip_adapter_faceid import IPAdapterFaceIDPlus |
|
import cv2 |
|
from insightface.app import FaceAnalysis |
|
from insightface.utils import face_align |
|
import gradio as gr |
|
from huggingface_hub import hf_hub_download |
|
from datetime import datetime |
|
|
|
|
|
def download_models(): |
|
hf_hub_download( |
|
repo_id='h94/IP-Adapter-FaceID', |
|
filename='ip-adapter-faceid-plus_sd15.bin', |
|
local_dir='IP-Adapter-FaceID') |
|
hf_hub_download( |
|
repo_id='h94/IP-Adapter', |
|
filename='models/image_encoder/config.json', |
|
local_dir='IP-Adapter') |
|
hf_hub_download( |
|
repo_id='h94/IP-Adapter', |
|
filename='models/image_encoder/pytorch_model.bin', |
|
local_dir='IP-Adapter') |
|
|
|
|
|
def get_ip_model(): |
|
download_models() |
|
base_model_path = "SG161222/Realistic_Vision_V4.0_noVAE" |
|
vae_model_path = "stabilityai/sd-vae-ft-mse" |
|
image_encoder_path = "IP-Adapter/models/image_encoder" |
|
ip_ckpt = "IP-Adapter-FaceID/ip-adapter-faceid-plus_sd15.bin" |
|
|
|
if torch.cuda.is_available(): |
|
device = 'cuda' |
|
torch_dtype = torch.float16 |
|
else: |
|
device = 'cpu' |
|
torch_dtype = torch.float32 |
|
print(f'Using device: {device}') |
|
|
|
noise_scheduler = DDIMScheduler( |
|
num_train_timesteps=1000, |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
beta_schedule="scaled_linear", |
|
clip_sample=False, |
|
set_alpha_to_one=False, |
|
steps_offset=1, |
|
) |
|
vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch_dtype) |
|
pipe = StableDiffusionPipeline.from_pretrained( |
|
base_model_path, |
|
torch_dtype=torch_dtype, |
|
scheduler=noise_scheduler, |
|
vae=vae, |
|
feature_extractor=None, |
|
safety_checker=None |
|
) |
|
|
|
ip_model = IPAdapterFaceIDPlus(pipe, image_encoder_path, ip_ckpt, device, num_tokens=4, torch_dtype=torch_dtype) |
|
return ip_model |
|
|
|
|
|
ip_model = get_ip_model() |
|
app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider']) |
|
app.prepare(ctx_id=0, det_size=(640, 640), det_thresh=0.2) |
|
|
|
def generate_images(prompt, img_filepath, |
|
negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality, blurry", |
|
img_prompt_scale=0.5, |
|
num_inference_steps=30, |
|
seed=None, n_images=1): |
|
print(f'{datetime.now().strftime("%Y/%m/%d %H:%M:%S")}: {prompt}') |
|
image = cv2.imread(img_filepath) |
|
faces = app.get(image) |
|
|
|
faceid_embeds = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0) |
|
face_image = face_align.norm_crop(image, landmark=faces[0].kps, image_size=224) |
|
images = ip_model.generate( |
|
prompt=prompt, negative_prompt=negative_prompt, face_image=face_image, faceid_embeds=faceid_embeds, |
|
num_samples=n_images, width=512, height=512, num_inference_steps=num_inference_steps, seed=seed, |
|
scale=img_prompt_scale, |
|
) |
|
return [images[0], Image.fromarray(face_image[..., [2, 1, 0]])] |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown( |
|
""" |
|
# IP-Adapter-FaceID-plus |
|
Generate images conditioned on a image prompt and a text prompt. Learn more here: https://huggingface.co./h94/IP-Adapter-FaceID |
|
This demo is intended to use on GPU. It will work also on CPU but generating one image could take 900 seconds compared to a few seconds on GPU. |
|
""") |
|
with gr.Row(): |
|
with gr.Column(): |
|
demo_inputs = [] |
|
demo_inputs.append(gr.Textbox(label='text prompt', value='Linkedin profile picture')) |
|
demo_inputs.append(gr.Image(type='filepath', label='image prompt')) |
|
with gr.Accordion(label='Advanced options', open=False): |
|
demo_inputs.append(gr.Textbox(label='negative text prompt', value="monochrome, lowres, bad anatomy, worst quality, low quality, blurry")) |
|
demo_inputs.append(gr.Slider(maximum=1, minimum=0, value=0.5, step=0.05, label='image prompt scale')) |
|
btn = gr.Button("Generate") |
|
|
|
with gr.Column(): |
|
demo_outputs = [] |
|
demo_outputs.append(gr.Image(label='generated image')) |
|
demo_outputs.append(gr.Image(label='detected face', height=224, width=224)) |
|
btn.click(generate_images, inputs=demo_inputs, outputs=demo_outputs) |
|
sample_prompts = [ |
|
'Linkedin profile picture', |
|
'A singer on stage', |
|
'A politician talking to the people', |
|
'An astronaut in space', |
|
] |
|
gr.Examples(sample_prompts, inputs=demo_inputs[0], label='Sample prompts') |
|
|
|
demo.launch(share=True, debug=True) |
|
|