File size: 4,759 Bytes
96891ca
f15e0fa
96891ca
f15e0fa
96891ca
f15e0fa
 
96891ca
f15e0fa
96891ca
f15e0fa
 
96891ca
 
 
 
 
 
 
 
 
 
 
 
 
f15e0fa
 
 
96891ca
f15e0fa
 
 
 
 
96891ca
 
 
 
 
 
f15e0fa
 
96891ca
 
 
 
 
 
 
 
 
f15e0fa
 
 
 
 
 
 
 
 
 
 
 
 
 
96891ca
 
 
 
 
 
 
 
 
 
f15e0fa
 
 
 
96891ca
f15e0fa
 
 
96891ca
f15e0fa
 
 
 
96891ca
 
f15e0fa
96891ca
 
 
f15e0fa
96891ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f15e0fa
96891ca
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import torch
from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL
from PIL import Image
from ip_adapter.ip_adapter_faceid import IPAdapterFaceIDPlus
import cv2
from insightface.app import FaceAnalysis
from insightface.utils import face_align
import gradio as gr
from huggingface_hub import hf_hub_download
from datetime import datetime


def download_models():
    hf_hub_download(
        repo_id='h94/IP-Adapter-FaceID',
        filename='ip-adapter-faceid-plus_sd15.bin',
        local_dir='IP-Adapter-FaceID')
    hf_hub_download(
        repo_id='h94/IP-Adapter',
        filename='models/image_encoder/config.json',
        local_dir='IP-Adapter')
    hf_hub_download(
        repo_id='h94/IP-Adapter',
        filename='models/image_encoder/pytorch_model.bin',
        local_dir='IP-Adapter')


def get_ip_model():
    download_models()
    base_model_path = "SG161222/Realistic_Vision_V4.0_noVAE"
    vae_model_path = "stabilityai/sd-vae-ft-mse"
    image_encoder_path = "IP-Adapter/models/image_encoder"
    ip_ckpt = "IP-Adapter-FaceID/ip-adapter-faceid-plus_sd15.bin"

    if torch.cuda.is_available():
        device = 'cuda'
        torch_dtype = torch.float16
    else:
        device = 'cpu'
        torch_dtype = torch.float32
    print(f'Using device: {device}')

    noise_scheduler = DDIMScheduler(
        num_train_timesteps=1000,
        beta_start=0.00085,
        beta_end=0.012,
        beta_schedule="scaled_linear",
        clip_sample=False,
        set_alpha_to_one=False,
        steps_offset=1,
    )
    vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch_dtype)
    pipe = StableDiffusionPipeline.from_pretrained(
        base_model_path,
        torch_dtype=torch_dtype,
        scheduler=noise_scheduler,
        vae=vae,
        feature_extractor=None,
        safety_checker=None
    )

    ip_model = IPAdapterFaceIDPlus(pipe, image_encoder_path, ip_ckpt, device, num_tokens=4, torch_dtype=torch_dtype)
    return ip_model


ip_model = get_ip_model()
app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640), det_thresh=0.2)

def generate_images(prompt, img_filepath,
                    negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality, blurry",
                    img_prompt_scale=0.5,
                    num_inference_steps=30,
                    seed=None, n_images=1):
    print(f'{datetime.now().strftime("%Y/%m/%d %H:%M:%S")}: {prompt}')
    image = cv2.imread(img_filepath)
    faces = app.get(image)

    faceid_embeds = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
    face_image = face_align.norm_crop(image, landmark=faces[0].kps, image_size=224) # you can also segment the face
    images = ip_model.generate(
        prompt=prompt, negative_prompt=negative_prompt, face_image=face_image, faceid_embeds=faceid_embeds,
        num_samples=n_images, width=512, height=512, num_inference_steps=num_inference_steps, seed=seed,
        scale=img_prompt_scale, # with scale=1 I get weird images
    )
    return [images[0], Image.fromarray(face_image[..., [2, 1, 0]])]


with gr.Blocks() as demo:
    gr.Markdown(
    """
    # IP-Adapter-FaceID-plus
    Generate images conditioned on a image prompt and a text prompt. Learn more here: https://huggingface.co./h94/IP-Adapter-FaceID
    This demo is intended to use on GPU. It will work also on CPU but generating one image could take 900 seconds compared to a few seconds on GPU.
    """)
    with gr.Row():
        with gr.Column():
            demo_inputs = []
            demo_inputs.append(gr.Textbox(label='text prompt', value='Linkedin profile picture'))
            demo_inputs.append(gr.Image(type='filepath', label='image prompt'))
            with gr.Accordion(label='Advanced options', open=False):
                demo_inputs.append(gr.Textbox(label='negative text prompt', value="monochrome, lowres, bad anatomy, worst quality, low quality, blurry"))
                demo_inputs.append(gr.Slider(maximum=1, minimum=0, value=0.5, step=0.05, label='image prompt scale'))
            btn = gr.Button("Generate")

        with gr.Column():
            demo_outputs = []
            demo_outputs.append(gr.Image(label='generated image'))
            demo_outputs.append(gr.Image(label='detected face', height=224, width=224))
    btn.click(generate_images, inputs=demo_inputs, outputs=demo_outputs)
    sample_prompts = [
        'Linkedin profile picture',
        'A singer on stage',
        'A politician talking to the people',
        'An astronaut in space',
        ]
    gr.Examples(sample_prompts, inputs=demo_inputs[0], label='Sample prompts')

demo.launch(share=True, debug=True)