Spaces:
Sleeping
Sleeping
File size: 11,698 Bytes
d66ba5d 51c7ae7 d66ba5d 51c7ae7 d66ba5d 51c7ae7 d66ba5d 51c7ae7 d66ba5d 87cad69 d66ba5d 87cad69 d66ba5d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
import gradio as gr
from langchain.document_loaders import PDFPlumberLoader
from langchain.text_splitter import CharacterTextSplitter, TokenTextSplitter
from transformers import pipeline
from langchain.prompts import PromptTemplate
from langchain.chat_models import ChatOpenAI
from langchain.vectorstores import Chroma
from langchain.chains import RetrievalQA
from langchain import HuggingFacePipeline
from langchain.embeddings import HuggingFaceInstructEmbeddings, HuggingFaceEmbeddings
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.llms import OpenAI
from constants import *
import torch
import os
import re
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers import pipeline
EMB_INSTRUCTOR_XL = "hkunlp/instructor-xl"
EMB_SBERT_MPNET_BASE = "sentence-transformers/all-mpnet-base-v2"
LLM_FLAN_T5_XXL = "google/flan-t5-xxl"
LLM_FLAN_T5_XL = "google/flan-t5-xl"
LLM_FASTCHAT_T5_XL = "lmsys/fastchat-t5-3b-v1.0"
LLM_FLAN_T5_SMALL = "google/flan-t5-small"
LLM_FLAN_T5_BASE = "google/flan-t5-base"
LLM_FLAN_T5_LARGE = "google/flan-t5-large"
LLM_FALCON_SMALL = "tiiuae/falcon-7b-instruct"
class PdfQA:
def __init__(self,config:dict = {}):
self.config = config
self.embedding = None
self.vectordb = None
self.llm = None
self.qa = None
self.retriever = None
# The following class methods are useful to create global GPU model instances
# This way we don't need to reload models in an interactive app,
# and the same model instance can be used across multiple user sessions
@classmethod
def create_instructor_xl(cls):
device = "cuda" if torch.cuda.is_available() else "cpu"
return HuggingFaceInstructEmbeddings(model_name=EMB_INSTRUCTOR_XL, model_kwargs={"device": device})
@classmethod
def create_sbert_mpnet(cls):
device = "cuda" if torch.cuda.is_available() else "cpu"
return HuggingFaceEmbeddings(model_name=EMB_SBERT_MPNET_BASE, model_kwargs={"device": device})
@classmethod
def create_flan_t5_xxl(cls, load_in_8bit=False):
# Local flan-t5-xxl with 8-bit quantization for inference
# Wrap it in HF pipeline for use with LangChain
return pipeline(
task="text2text-generation",
model="google/flan-t5-xxl",
max_new_tokens=200,
model_kwargs={"device_map": "auto", "load_in_8bit": load_in_8bit, "max_length": 512, "temperature": 0.}
)
@classmethod
def create_flan_t5_xl(cls, load_in_8bit=False):
return pipeline(
task="text2text-generation",
model="google/flan-t5-xl",
max_new_tokens=200,
model_kwargs={"device_map": "auto", "load_in_8bit": load_in_8bit, "max_length": 512, "temperature": 0.}
)
@classmethod
def create_flan_t5_small(cls, load_in_8bit=False):
# Local flan-t5-small for inference
# Wrap it in HF pipeline for use with LangChain
model="google/flan-t5-small"
tokenizer = AutoTokenizer.from_pretrained(model)
return pipeline(
task="text2text-generation",
model=model,
tokenizer = tokenizer,
max_new_tokens=100,
model_kwargs={"device_map": "auto", "load_in_8bit": load_in_8bit, "max_length": 512, "temperature": 0.}
)
@classmethod
def create_flan_t5_base(cls, load_in_8bit=False):
# Wrap it in HF pipeline for use with LangChain
model="google/flan-t5-base"
tokenizer = AutoTokenizer.from_pretrained(model)
return pipeline(
task="text2text-generation",
model=model,
tokenizer = tokenizer,
max_new_tokens=100,
model_kwargs={"device_map": "auto", "load_in_8bit": load_in_8bit, "max_length": 512, "temperature": 0.}
)
@classmethod
def create_flan_t5_large(cls, load_in_8bit=False):
# Wrap it in HF pipeline for use with LangChain
model="google/flan-t5-large"
tokenizer = AutoTokenizer.from_pretrained(model)
return pipeline(
task="text2text-generation",
model=model,
tokenizer = tokenizer,
max_new_tokens=100,
model_kwargs={"device_map": "auto", "load_in_8bit": load_in_8bit, "max_length": 512, "temperature": 0.}
)
@classmethod
def create_fastchat_t5_xl(cls, load_in_8bit=False):
return pipeline(
task="text2text-generation",
model = "lmsys/fastchat-t5-3b-v1.0",
max_new_tokens=100,
model_kwargs={"device_map": "auto", "load_in_8bit": load_in_8bit, "max_length": 512, "temperature": 0.}
)
@classmethod
def create_falcon_instruct_small(cls, load_in_8bit=False):
model = "tiiuae/falcon-7b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model)
hf_pipeline = pipeline(
task="text-generation",
model = model,
tokenizer = tokenizer,
trust_remote_code = True,
max_new_tokens=100,
model_kwargs={
"device_map": "auto",
"load_in_8bit": load_in_8bit,
"max_length": 512,
"temperature": 0.01,
"torch_dtype":torch.bfloat16,
}
)
return hf_pipeline
def init_embeddings(self) -> None:
if self.config["embedding"] == EMB_INSTRUCTOR_XL:
# Local INSTRUCTOR-XL embeddings
if self.embedding is None:
self.embedding = PdfQA.create_instructor_xl()
elif self.config["embedding"] == EMB_SBERT_MPNET_BASE:
## this is for SBERT
if self.embedding is None:
self.embedding = PdfQA.create_sbert_mpnet()
else:
self.embedding = None ## DuckDb uses sbert embeddings
# raise ValueError("Invalid config")
def init_models(self) -> None:
""" Initialize LLM models based on config """
load_in_8bit = self.config.get("load_in_8bit",False)
# OpenAI GPT 3.5 API
if self.config["llm"] == LLM_FLAN_T5_SMALL:
if self.llm is None:
self.llm = PdfQA.create_flan_t5_small(load_in_8bit=load_in_8bit)
elif self.config["llm"] == LLM_FLAN_T5_BASE:
if self.llm is None:
self.llm = PdfQA.create_flan_t5_base(load_in_8bit=load_in_8bit)
elif self.config["llm"] == LLM_FLAN_T5_LARGE:
if self.llm is None:
self.llm = PdfQA.create_flan_t5_large(load_in_8bit=load_in_8bit)
elif self.config["llm"] == LLM_FLAN_T5_XL:
if self.llm is None:
self.llm = PdfQA.create_flan_t5_xl(load_in_8bit=load_in_8bit)
elif self.config["llm"] == LLM_FLAN_T5_XXL:
if self.llm is None:
self.llm = PdfQA.create_flan_t5_xxl(load_in_8bit=load_in_8bit)
elif self.config["llm"] == LLM_FASTCHAT_T5_XL:
if self.llm is None:
self.llm = PdfQA.create_fastchat_t5_xl(load_in_8bit=load_in_8bit)
elif self.config["llm"] == LLM_FALCON_SMALL:
if self.llm is None:
self.llm = PdfQA.create_falcon_instruct_small(load_in_8bit=load_in_8bit)
else:
raise ValueError("Invalid config")
def vector_db_pdf(self) -> None:
"""
creates vector db for the embeddings and persists them or loads a vector db from the persist directory
"""
pdf_path = self.config.get("pdf_path",None)
persist_directory = self.config.get("persist_directory",None)
if persist_directory and os.path.exists(persist_directory):
## Load from the persist db
self.vectordb = Chroma(persist_directory=persist_directory, embedding_function=self.embedding)
elif pdf_path and os.path.exists(pdf_path):
## 1. Extract the documents
loader = PDFPlumberLoader(pdf_path)
documents = loader.load()
## 2. Split the texts
text_splitter = CharacterTextSplitter(chunk_size=100, chunk_overlap=0)
texts = text_splitter.split_documents(documents)
# text_splitter = TokenTextSplitter(chunk_size=100, chunk_overlap=10, encoding_name="cl100k_base") # This the encoding for text-embedding-ada-002
text_splitter = TokenTextSplitter(chunk_size=100, chunk_overlap=10) # This the encoding for text-embedding-ada-002
texts = text_splitter.split_documents(texts)
## 3. Create Embeddings and add to chroma store
##TODO: Validate if self.embedding is not None
self.vectordb = Chroma.from_documents(documents=texts, embedding=self.embedding, persist_directory=persist_directory)
else:
raise ValueError("NO PDF found")
def retreival_qa_chain(self):
"""
Creates retrieval qa chain using vectordb as retrivar and LLM to complete the prompt
"""
##TODO: Use custom prompt
self.retriever = self.vectordb.as_retriever(search_kwargs={"k":3})
hf_llm = HuggingFacePipeline(pipeline=self.llm,model_id=self.config["llm"])
self.qa = RetrievalQA.from_chain_type(llm=hf_llm, chain_type="stuff",retriever=self.retriever)
if self.config["llm"] == LLM_FLAN_T5_SMALL or self.config["llm"] == LLM_FLAN_T5_BASE or self.config["llm"] == LLM_FLAN_T5_LARGE:
question_t5_template = """
context: {context}
question: {question}
answer:
"""
QUESTION_T5_PROMPT = PromptTemplate(
template=question_t5_template, input_variables=["context", "question"]
)
self.qa.combine_documents_chain.llm_chain.prompt = QUESTION_T5_PROMPT
self.qa.combine_documents_chain.verbose = True
self.qa.return_source_documents = True
def answer_query(self,question:str) ->str:
"""
Answer the question
"""
answer_dict = self.qa({"query":question,})
print(answer_dict)
answer = answer_dict["result"]
if self.config["llm"] == LLM_FASTCHAT_T5_XL:
answer = self._clean_fastchat_t5_output(answer)
return answer
def _clean_fastchat_t5_output(self, answer: str) -> str:
# Remove <pad> tags, double spaces, trailing newline
answer = re.sub(r"<pad>\s+", "", answer)
answer = re.sub(r" ", " ", answer)
answer = re.sub(r"\n$", "", answer)
return answer
# Configuration for PdfQA
config = {"persist_directory":None,
"load_in_8bit":False,
"embedding" : EMB_SBERT_MPNET_BASE,
"llm":LLM_FLAN_T5_BASE,
"pdf_path":"48lawsofpower.pdf"
}
pdfqa = PdfQA(config=config)
pdfqa.init_embeddings()
pdfqa.init_models()
# Create Vector DB
pdfqa.vector_db_pdf()
# Set up Retrieval QA Chain
pdfqa.retreival_qa_chain()
def ask(text):
question = text+", tell me in details"
answer = pdfqa.answer_query(question)
return answer
with gr.Blocks() as server:
with gr.Tab("48lawsofpower LLM Inferencing"):
model_input = gr.Textbox(label="Your Question about 48lawsofpower book:",
value="What’s your question?", interactive=True)
ask_button = gr.Button("Ask")
model_output = gr.Textbox(label="The Answer:", interactive=False,
value="Answer goes here...")
ask_button.click(ask, inputs=[model_input], outputs=[model_output])
server.launch() |