Spaces:
Sleeping
Sleeping
MohamedAAK
commited on
Commit
•
51c7ae7
1
Parent(s):
521d025
Update app.py
Browse files
app.py
CHANGED
@@ -1,25 +1,272 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
import
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
import torch
|
|
|
|
|
6 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
def ask(text):
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
inputs = tokenizer(prompt, return_tensors='pt').to(model.device)
|
15 |
-
|
16 |
-
input_length = inputs.input_ids.shape[1]
|
17 |
-
outputs = model.generate(**inputs, max_new_tokens=48, temperature=0.7,
|
18 |
-
return_dict_in_generate=True)
|
19 |
-
|
20 |
-
tokens = outputs.sequences[0, input_length:]
|
21 |
-
return tokenizer.decode(tokens)
|
22 |
-
|
23 |
with gr.Blocks() as server:
|
24 |
with gr.Tab("LLM Inferencing"):
|
25 |
|
|
|
1 |
import gradio as gr
|
2 |
+
from langchain.document_loaders import PDFPlumberLoader
|
3 |
+
from langchain.text_splitter import CharacterTextSplitter, TokenTextSplitter
|
4 |
+
from transformers import pipeline
|
5 |
+
from langchain.prompts import PromptTemplate
|
6 |
+
from langchain.chat_models import ChatOpenAI
|
7 |
+
from langchain.vectorstores import Chroma
|
8 |
+
from langchain.chains import RetrievalQA
|
9 |
+
from langchain import HuggingFacePipeline
|
10 |
+
from langchain.embeddings import HuggingFaceInstructEmbeddings, HuggingFaceEmbeddings
|
11 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
12 |
+
from langchain.llms import OpenAI
|
13 |
+
from constants import *
|
14 |
import torch
|
15 |
+
import os
|
16 |
+
import re
|
17 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
18 |
+
from transformers import pipeline
|
19 |
+
|
20 |
+
EMB_INSTRUCTOR_XL = "hkunlp/instructor-xl"
|
21 |
+
EMB_SBERT_MPNET_BASE = "sentence-transformers/all-mpnet-base-v2"
|
22 |
+
LLM_FLAN_T5_XXL = "google/flan-t5-xxl"
|
23 |
+
LLM_FLAN_T5_XL = "google/flan-t5-xl"
|
24 |
+
LLM_FASTCHAT_T5_XL = "lmsys/fastchat-t5-3b-v1.0"
|
25 |
+
LLM_FLAN_T5_SMALL = "google/flan-t5-small"
|
26 |
+
LLM_FLAN_T5_BASE = "google/flan-t5-base"
|
27 |
+
LLM_FLAN_T5_LARGE = "google/flan-t5-large"
|
28 |
+
LLM_FALCON_SMALL = "tiiuae/falcon-7b-instruct"
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
class PdfQA:
|
33 |
+
def __init__(self,config:dict = {}):
|
34 |
+
self.config = config
|
35 |
+
self.embedding = None
|
36 |
+
self.vectordb = None
|
37 |
+
self.llm = None
|
38 |
+
self.qa = None
|
39 |
+
self.retriever = None
|
40 |
+
|
41 |
+
# The following class methods are useful to create global GPU model instances
|
42 |
+
# This way we don't need to reload models in an interactive app,
|
43 |
+
# and the same model instance can be used across multiple user sessions
|
44 |
+
@classmethod
|
45 |
+
def create_instructor_xl(cls):
|
46 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
47 |
+
return HuggingFaceInstructEmbeddings(model_name=EMB_INSTRUCTOR_XL, model_kwargs={"device": device})
|
48 |
+
|
49 |
+
@classmethod
|
50 |
+
def create_sbert_mpnet(cls):
|
51 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
52 |
+
return HuggingFaceEmbeddings(model_name=EMB_SBERT_MPNET_BASE, model_kwargs={"device": device})
|
53 |
+
|
54 |
+
@classmethod
|
55 |
+
def create_flan_t5_xxl(cls, load_in_8bit=False):
|
56 |
+
# Local flan-t5-xxl with 8-bit quantization for inference
|
57 |
+
# Wrap it in HF pipeline for use with LangChain
|
58 |
+
return pipeline(
|
59 |
+
task="text2text-generation",
|
60 |
+
model="google/flan-t5-xxl",
|
61 |
+
max_new_tokens=200,
|
62 |
+
model_kwargs={"device_map": "auto", "load_in_8bit": load_in_8bit, "max_length": 512, "temperature": 0.}
|
63 |
+
)
|
64 |
+
@classmethod
|
65 |
+
def create_flan_t5_xl(cls, load_in_8bit=False):
|
66 |
+
return pipeline(
|
67 |
+
task="text2text-generation",
|
68 |
+
model="google/flan-t5-xl",
|
69 |
+
max_new_tokens=200,
|
70 |
+
model_kwargs={"device_map": "auto", "load_in_8bit": load_in_8bit, "max_length": 512, "temperature": 0.}
|
71 |
+
)
|
72 |
+
|
73 |
+
@classmethod
|
74 |
+
def create_flan_t5_small(cls, load_in_8bit=False):
|
75 |
+
# Local flan-t5-small for inference
|
76 |
+
# Wrap it in HF pipeline for use with LangChain
|
77 |
+
model="google/flan-t5-small"
|
78 |
+
tokenizer = AutoTokenizer.from_pretrained(model)
|
79 |
+
return pipeline(
|
80 |
+
task="text2text-generation",
|
81 |
+
model=model,
|
82 |
+
tokenizer = tokenizer,
|
83 |
+
max_new_tokens=100,
|
84 |
+
model_kwargs={"device_map": "auto", "load_in_8bit": load_in_8bit, "max_length": 512, "temperature": 0.}
|
85 |
+
)
|
86 |
+
@classmethod
|
87 |
+
def create_flan_t5_base(cls, load_in_8bit=False):
|
88 |
+
# Wrap it in HF pipeline for use with LangChain
|
89 |
+
model="google/flan-t5-base"
|
90 |
+
tokenizer = AutoTokenizer.from_pretrained(model)
|
91 |
+
return pipeline(
|
92 |
+
task="text2text-generation",
|
93 |
+
model=model,
|
94 |
+
tokenizer = tokenizer,
|
95 |
+
max_new_tokens=100,
|
96 |
+
model_kwargs={"device_map": "auto", "load_in_8bit": load_in_8bit, "max_length": 512, "temperature": 0.}
|
97 |
+
)
|
98 |
+
@classmethod
|
99 |
+
def create_flan_t5_large(cls, load_in_8bit=False):
|
100 |
+
# Wrap it in HF pipeline for use with LangChain
|
101 |
+
model="google/flan-t5-large"
|
102 |
+
tokenizer = AutoTokenizer.from_pretrained(model)
|
103 |
+
return pipeline(
|
104 |
+
task="text2text-generation",
|
105 |
+
model=model,
|
106 |
+
tokenizer = tokenizer,
|
107 |
+
max_new_tokens=100,
|
108 |
+
model_kwargs={"device_map": "auto", "load_in_8bit": load_in_8bit, "max_length": 512, "temperature": 0.}
|
109 |
+
)
|
110 |
+
@classmethod
|
111 |
+
def create_fastchat_t5_xl(cls, load_in_8bit=False):
|
112 |
+
return pipeline(
|
113 |
+
task="text2text-generation",
|
114 |
+
model = "lmsys/fastchat-t5-3b-v1.0",
|
115 |
+
max_new_tokens=100,
|
116 |
+
model_kwargs={"device_map": "auto", "load_in_8bit": load_in_8bit, "max_length": 512, "temperature": 0.}
|
117 |
+
)
|
118 |
+
|
119 |
+
@classmethod
|
120 |
+
def create_falcon_instruct_small(cls, load_in_8bit=False):
|
121 |
+
model = "tiiuae/falcon-7b-instruct"
|
122 |
+
|
123 |
+
tokenizer = AutoTokenizer.from_pretrained(model)
|
124 |
+
hf_pipeline = pipeline(
|
125 |
+
task="text-generation",
|
126 |
+
model = model,
|
127 |
+
tokenizer = tokenizer,
|
128 |
+
trust_remote_code = True,
|
129 |
+
max_new_tokens=100,
|
130 |
+
model_kwargs={
|
131 |
+
"device_map": "auto",
|
132 |
+
"load_in_8bit": load_in_8bit,
|
133 |
+
"max_length": 512,
|
134 |
+
"temperature": 0.01,
|
135 |
+
"torch_dtype":torch.bfloat16,
|
136 |
+
}
|
137 |
+
)
|
138 |
+
return hf_pipeline
|
139 |
+
|
140 |
+
def init_embeddings(self) -> None:
|
141 |
+
if self.config["embedding"] == EMB_INSTRUCTOR_XL:
|
142 |
+
# Local INSTRUCTOR-XL embeddings
|
143 |
+
if self.embedding is None:
|
144 |
+
self.embedding = PdfQA.create_instructor_xl()
|
145 |
+
elif self.config["embedding"] == EMB_SBERT_MPNET_BASE:
|
146 |
+
## this is for SBERT
|
147 |
+
if self.embedding is None:
|
148 |
+
self.embedding = PdfQA.create_sbert_mpnet()
|
149 |
+
else:
|
150 |
+
self.embedding = None ## DuckDb uses sbert embeddings
|
151 |
+
# raise ValueError("Invalid config")
|
152 |
+
|
153 |
+
def init_models(self) -> None:
|
154 |
+
""" Initialize LLM models based on config """
|
155 |
+
load_in_8bit = self.config.get("load_in_8bit",False)
|
156 |
+
# OpenAI GPT 3.5 API
|
157 |
+
if self.config["llm"] == LLM_FLAN_T5_SMALL:
|
158 |
+
if self.llm is None:
|
159 |
+
self.llm = PdfQA.create_flan_t5_small(load_in_8bit=load_in_8bit)
|
160 |
+
elif self.config["llm"] == LLM_FLAN_T5_BASE:
|
161 |
+
if self.llm is None:
|
162 |
+
self.llm = PdfQA.create_flan_t5_base(load_in_8bit=load_in_8bit)
|
163 |
+
elif self.config["llm"] == LLM_FLAN_T5_LARGE:
|
164 |
+
if self.llm is None:
|
165 |
+
self.llm = PdfQA.create_flan_t5_large(load_in_8bit=load_in_8bit)
|
166 |
+
elif self.config["llm"] == LLM_FLAN_T5_XL:
|
167 |
+
if self.llm is None:
|
168 |
+
self.llm = PdfQA.create_flan_t5_xl(load_in_8bit=load_in_8bit)
|
169 |
+
elif self.config["llm"] == LLM_FLAN_T5_XXL:
|
170 |
+
if self.llm is None:
|
171 |
+
self.llm = PdfQA.create_flan_t5_xxl(load_in_8bit=load_in_8bit)
|
172 |
+
elif self.config["llm"] == LLM_FASTCHAT_T5_XL:
|
173 |
+
if self.llm is None:
|
174 |
+
self.llm = PdfQA.create_fastchat_t5_xl(load_in_8bit=load_in_8bit)
|
175 |
+
elif self.config["llm"] == LLM_FALCON_SMALL:
|
176 |
+
if self.llm is None:
|
177 |
+
self.llm = PdfQA.create_falcon_instruct_small(load_in_8bit=load_in_8bit)
|
178 |
+
|
179 |
+
else:
|
180 |
+
raise ValueError("Invalid config")
|
181 |
+
def vector_db_pdf(self) -> None:
|
182 |
+
"""
|
183 |
+
creates vector db for the embeddings and persists them or loads a vector db from the persist directory
|
184 |
+
"""
|
185 |
+
pdf_path = self.config.get("pdf_path",None)
|
186 |
+
persist_directory = self.config.get("persist_directory",None)
|
187 |
+
if persist_directory and os.path.exists(persist_directory):
|
188 |
+
## Load from the persist db
|
189 |
+
self.vectordb = Chroma(persist_directory=persist_directory, embedding_function=self.embedding)
|
190 |
+
elif pdf_path and os.path.exists(pdf_path):
|
191 |
+
## 1. Extract the documents
|
192 |
+
loader = PDFPlumberLoader(pdf_path)
|
193 |
+
documents = loader.load()
|
194 |
+
## 2. Split the texts
|
195 |
+
text_splitter = CharacterTextSplitter(chunk_size=100, chunk_overlap=0)
|
196 |
+
texts = text_splitter.split_documents(documents)
|
197 |
+
# text_splitter = TokenTextSplitter(chunk_size=100, chunk_overlap=10, encoding_name="cl100k_base") # This the encoding for text-embedding-ada-002
|
198 |
+
text_splitter = TokenTextSplitter(chunk_size=100, chunk_overlap=10) # This the encoding for text-embedding-ada-002
|
199 |
+
texts = text_splitter.split_documents(texts)
|
200 |
+
|
201 |
+
## 3. Create Embeddings and add to chroma store
|
202 |
+
##TODO: Validate if self.embedding is not None
|
203 |
+
self.vectordb = Chroma.from_documents(documents=texts, embedding=self.embedding, persist_directory=persist_directory)
|
204 |
+
else:
|
205 |
+
raise ValueError("NO PDF found")
|
206 |
+
|
207 |
+
def retreival_qa_chain(self):
|
208 |
+
"""
|
209 |
+
Creates retrieval qa chain using vectordb as retrivar and LLM to complete the prompt
|
210 |
+
"""
|
211 |
+
##TODO: Use custom prompt
|
212 |
+
self.retriever = self.vectordb.as_retriever(search_kwargs={"k":3})
|
213 |
+
|
214 |
+
hf_llm = HuggingFacePipeline(pipeline=self.llm,model_id=self.config["llm"])
|
215 |
+
|
216 |
+
self.qa = RetrievalQA.from_chain_type(llm=hf_llm, chain_type="stuff",retriever=self.retriever)
|
217 |
+
if self.config["llm"] == LLM_FLAN_T5_SMALL or self.config["llm"] == LLM_FLAN_T5_BASE or self.config["llm"] == LLM_FLAN_T5_LARGE:
|
218 |
+
question_t5_template = """
|
219 |
+
context: {context}
|
220 |
+
question: {question}
|
221 |
+
answer:
|
222 |
+
"""
|
223 |
+
QUESTION_T5_PROMPT = PromptTemplate(
|
224 |
+
template=question_t5_template, input_variables=["context", "question"]
|
225 |
+
)
|
226 |
+
self.qa.combine_documents_chain.llm_chain.prompt = QUESTION_T5_PROMPT
|
227 |
+
self.qa.combine_documents_chain.verbose = True
|
228 |
+
self.qa.return_source_documents = True
|
229 |
+
def answer_query(self,question:str) ->str:
|
230 |
+
"""
|
231 |
+
Answer the question
|
232 |
+
"""
|
233 |
+
|
234 |
+
answer_dict = self.qa({"query":question,})
|
235 |
+
print(answer_dict)
|
236 |
+
answer = answer_dict["result"]
|
237 |
+
if self.config["llm"] == LLM_FASTCHAT_T5_XL:
|
238 |
+
answer = self._clean_fastchat_t5_output(answer)
|
239 |
+
return answer
|
240 |
+
def _clean_fastchat_t5_output(self, answer: str) -> str:
|
241 |
+
# Remove <pad> tags, double spaces, trailing newline
|
242 |
+
answer = re.sub(r"<pad>\s+", "", answer)
|
243 |
+
answer = re.sub(r" ", " ", answer)
|
244 |
+
answer = re.sub(r"\n$", "", answer)
|
245 |
+
return answer
|
246 |
+
|
247 |
+
# Configuration for PdfQA
|
248 |
+
config = {"persist_directory":None,
|
249 |
+
"load_in_8bit":False,
|
250 |
+
"embedding" : EMB_SBERT_MPNET_BASE,
|
251 |
+
"llm":LLM_FLAN_T5_BASE,
|
252 |
+
"pdf_path":"48lawsofpower.pdf"
|
253 |
+
}
|
254 |
+
pdfqa = PdfQA(config=config)
|
255 |
+
pdfqa.init_embeddings()
|
256 |
+
pdfqa.init_models()
|
257 |
+
|
258 |
+
# Create Vector DB
|
259 |
+
pdfqa.vector_db_pdf()
|
260 |
+
|
261 |
+
# Set up Retrieval QA Chain
|
262 |
+
pdfqa.retreival_qa_chain()
|
263 |
+
|
264 |
def ask(text):
|
265 |
|
266 |
+
question = text+", tell me in details"
|
267 |
+
answer = pdfqa.answer_query(question)
|
268 |
+
return answer
|
269 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
270 |
with gr.Blocks() as server:
|
271 |
with gr.Tab("LLM Inferencing"):
|
272 |
|