Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
class ResNet(nn.Module): | |
def __init__(self, in_channels: int, num_classes: int): | |
"""ResNet9""" | |
super().__init__() | |
self.conv1 = ConvBlock(in_channels, 64) | |
self.conv2 = ConvBlock(64, 128, pool=True) | |
self.res1 = nn.Sequential( | |
ConvBlock(128, 128), | |
ConvBlock(128, 128) | |
) | |
self.conv3 = ConvBlock(128, 256) | |
self.conv4 = ConvBlock(256, 512, pool=True) | |
self.res2 = nn.Sequential( | |
ConvBlock(512, 512), | |
ConvBlock(512, 512) | |
) | |
self.classifier = nn.Sequential( | |
nn.MaxPool2d(kernel_size=(4, 4)), | |
nn.AdaptiveAvgPool2d(1), | |
nn.Flatten(), | |
nn.Linear(512, 128), | |
nn.Dropout(0.25), | |
nn.Linear(128, num_classes), | |
nn.Dropout(0.25), | |
) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = self.conv1(x) | |
x = self.conv2(x) | |
x = self.res1(x) + x #skip | |
x = self.conv3(x) | |
x = self.conv4(x) | |
x = self.res2(x) + x #skip | |
prediction = self.classifier(x) | |
return prediction | |
class ConvBlock(nn.Module): | |
def __init__(self, in_channels: int, out_channels: int, pool: bool = False, pool_no: int = 2): | |
super().__init__() | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.pool = pool | |
self.pool_no = pool_no | |
if self.pool: | |
self.pool_block = nn.Sequential( | |
nn.ReLU(inplace=True), | |
nn.MaxPool2d(self.pool_no) | |
) | |
else: | |
self.pool_block = nn.Sequential( | |
nn.ReLU(inplace=True), | |
) | |
self.block = nn.Sequential( | |
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1), | |
nn.BatchNorm2d(out_channels), | |
self.pool_block | |
) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = self.block(x) | |
return x |