Spaces:
Runtime error
Runtime error
first commit
Browse files- __pycache__/dataloading.cpython-310.pyc +0 -0
- __pycache__/gradio_utils.cpython-310.pyc +0 -0
- __pycache__/preprocessing.cpython-310.pyc +0 -0
- __pycache__/resnet.cpython-310.pyc +0 -0
- app.py +73 -0
- best_model_gradio.ipynb +504 -0
- dataloading.py +107 -0
- gradio_utils.py +42 -0
- model/HOP_LENGHT.joblib +3 -0
- model/MAX_TIME.joblib +3 -0
- model/METHOD.joblib +3 -0
- model/N_MFCC.joblib +3 -0
- model/SAMPLE_RATE.joblib +3 -0
- model/label_encoder.joblib +3 -0
- model/model.joblib +3 -0
- model/only_mffc_transform.joblib +3 -0
- preprocessing.py +202 -0
- requirements.txt +8 -0
- resnet.py +70 -0
__pycache__/dataloading.cpython-310.pyc
ADDED
Binary file (4.55 kB). View file
|
|
__pycache__/gradio_utils.cpython-310.pyc
ADDED
Binary file (1.5 kB). View file
|
|
__pycache__/preprocessing.cpython-310.pyc
ADDED
Binary file (8.42 kB). View file
|
|
__pycache__/resnet.cpython-310.pyc
ADDED
Binary file (2.13 kB). View file
|
|
app.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
import skorch
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
|
9 |
+
import librosa
|
10 |
+
|
11 |
+
from joblib import dump, load
|
12 |
+
|
13 |
+
from sklearn.pipeline import Pipeline
|
14 |
+
from sklearn.preprocessing import LabelEncoder
|
15 |
+
|
16 |
+
from resnet import ResNet
|
17 |
+
from gradio_utils import load_as_librosa, predict_gradio
|
18 |
+
from dataloading import uniformize, to_numpy
|
19 |
+
from preprocessing import MfccTransformer, TorchTransform
|
20 |
+
|
21 |
+
|
22 |
+
SEED : int = 42
|
23 |
+
np.random.seed(SEED)
|
24 |
+
torch.manual_seed(SEED)
|
25 |
+
|
26 |
+
model = load('./model/model.joblib')
|
27 |
+
only_mffc_transform = load('./model/only_mffc_transform.joblib')
|
28 |
+
label_encoder = load('./model/label_encoder.joblib')
|
29 |
+
SAMPLE_RATE = load("./model/SAMPLE_RATE.joblib")
|
30 |
+
METHOD = load("./model/METHOD.joblib")
|
31 |
+
MAX_TIME = load("./model/MAX_TIME.joblib")
|
32 |
+
N_MFCC = load("./model/N_MFCC.joblib")
|
33 |
+
HOP_LENGHT = load("./model/HOP_LENGHT.joblib")
|
34 |
+
|
35 |
+
sklearn_model = Pipeline(
|
36 |
+
steps=[
|
37 |
+
("mfcc", only_mffc_transform),
|
38 |
+
("model", model)
|
39 |
+
]
|
40 |
+
)
|
41 |
+
|
42 |
+
uniform_lambda = lambda y, sr: uniformize(y, sr, METHOD, MAX_TIME)
|
43 |
+
|
44 |
+
title = r"ResNet 9"
|
45 |
+
|
46 |
+
description = r"""
|
47 |
+
<center>
|
48 |
+
The resnet9 model was trained to classify drone speech command.
|
49 |
+
<img src="http://zeus.blanchon.cc/dropshare/modia.png" width=200px>
|
50 |
+
</center>
|
51 |
+
"""
|
52 |
+
article = r"""
|
53 |
+
- [Deep Residual Learning for Image Recognition](https://arxiv.org/pdf/1512.03385)
|
54 |
+
"""
|
55 |
+
|
56 |
+
demo_men = gr.Interface(
|
57 |
+
title = title,
|
58 |
+
description = description,
|
59 |
+
article = article,
|
60 |
+
fn=lambda data: predict_gradio(
|
61 |
+
data=data,
|
62 |
+
uniform_lambda=uniform_lambda,
|
63 |
+
sklearn_model=sklearn_model,
|
64 |
+
label_transform=label_encoder,
|
65 |
+
target_sr=SAMPLE_RATE),
|
66 |
+
inputs = gr.Audio(source="microphone", type="numpy"),
|
67 |
+
outputs = gr.Label(),
|
68 |
+
# allow_flagging = "manual",
|
69 |
+
# flagging_options = ['recule', 'tournedroite', 'arretetoi', 'tournegauche', 'gauche', 'avance', 'droite'],
|
70 |
+
# flagging_dir = "./flag/men"
|
71 |
+
)
|
72 |
+
|
73 |
+
demo_men.launch()
|
best_model_gradio.ipynb
ADDED
@@ -0,0 +1,504 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"# Best Model"
|
8 |
+
]
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"cell_type": "code",
|
12 |
+
"execution_count": 42,
|
13 |
+
"metadata": {},
|
14 |
+
"outputs": [
|
15 |
+
{
|
16 |
+
"name": "stdout",
|
17 |
+
"output_type": "stream",
|
18 |
+
"text": [
|
19 |
+
"The autoreload extension is already loaded. To reload it, use:\n",
|
20 |
+
" %reload_ext autoreload\n"
|
21 |
+
]
|
22 |
+
}
|
23 |
+
],
|
24 |
+
"source": [
|
25 |
+
"%load_ext autoreload\n",
|
26 |
+
"%autoreload 2\n",
|
27 |
+
"\n",
|
28 |
+
"import numpy as np\n",
|
29 |
+
"\n",
|
30 |
+
"import skorch\n",
|
31 |
+
"import torch\n",
|
32 |
+
"import torch.nn as nn\n",
|
33 |
+
"\n",
|
34 |
+
"import gradio as gr\n",
|
35 |
+
"\n",
|
36 |
+
"import librosa\n",
|
37 |
+
"\n",
|
38 |
+
"from joblib import dump, load\n",
|
39 |
+
"\n",
|
40 |
+
"from sklearn.pipeline import Pipeline\n",
|
41 |
+
"from sklearn.preprocessing import LabelEncoder\n",
|
42 |
+
"\n",
|
43 |
+
"from resnet import ResNet\n",
|
44 |
+
"from gradio_utils import load_as_librosa, predict_gradio\n",
|
45 |
+
"from dataloading import uniformize, to_numpy\n",
|
46 |
+
"from preprocessing import MfccTransformer, TorchTransform\n",
|
47 |
+
"\n"
|
48 |
+
]
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"cell_type": "code",
|
52 |
+
"execution_count": 27,
|
53 |
+
"metadata": {},
|
54 |
+
"outputs": [],
|
55 |
+
"source": [
|
56 |
+
"# Notebook params\n",
|
57 |
+
"SEED : int = 42\n",
|
58 |
+
"np.random.seed(SEED)\n",
|
59 |
+
"torch.manual_seed(SEED)\n",
|
60 |
+
"\n",
|
61 |
+
"# Dataloading params\n",
|
62 |
+
"PATHS: list[str] = [\n",
|
63 |
+
" \"../data/\",\n",
|
64 |
+
" \"../new_data/JulienNestor\",\n",
|
65 |
+
" \"../new_data/classroom_data\",\n",
|
66 |
+
" \"../new_data/class\",\n",
|
67 |
+
" \"../new_data/JulienRaph\",\n",
|
68 |
+
"]\n",
|
69 |
+
"REMOVE_LABEL: list[str] = [\n",
|
70 |
+
" \"penduleinverse\", \"pendule\", \n",
|
71 |
+
" \"decollage\", \"atterrissage\",\n",
|
72 |
+
" \"plushaut\", \"plusbas\",\n",
|
73 |
+
" \"etatdurgence\",\n",
|
74 |
+
" \"faisunflip\", \n",
|
75 |
+
" \"faisUnFlip\", \"arreteToi\", \"etatDurgence\",\n",
|
76 |
+
" # \"tournedroite\", \"arretetoi\", \"tournegauche\"\n",
|
77 |
+
"]\n",
|
78 |
+
"SAMPLE_RATE: int = 16_000\n",
|
79 |
+
"METHOD: str = \"time_stretch\"\n",
|
80 |
+
"MAX_TIME: float = 3.0\n",
|
81 |
+
"\n",
|
82 |
+
"# Features Extraction params\n",
|
83 |
+
"N_MFCC: int = 64\n",
|
84 |
+
"HOP_LENGHT = 2_048"
|
85 |
+
]
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"cell_type": "markdown",
|
89 |
+
"metadata": {},
|
90 |
+
"source": [
|
91 |
+
"# 1 - Dataloading"
|
92 |
+
]
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"cell_type": "code",
|
96 |
+
"execution_count": 28,
|
97 |
+
"metadata": {},
|
98 |
+
"outputs": [],
|
99 |
+
"source": [
|
100 |
+
"# 1-Dataloading\n",
|
101 |
+
"from dataloading import load_dataset, to_numpy\n",
|
102 |
+
"dataset, uniform_lambda = load_dataset(PATHS,\n",
|
103 |
+
" remove_label=REMOVE_LABEL,\n",
|
104 |
+
" sr=SAMPLE_RATE,\n",
|
105 |
+
" method=METHOD,\n",
|
106 |
+
" max_time=MAX_TIME\n",
|
107 |
+
" )"
|
108 |
+
]
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"cell_type": "code",
|
112 |
+
"execution_count": 29,
|
113 |
+
"metadata": {},
|
114 |
+
"outputs": [
|
115 |
+
{
|
116 |
+
"data": {
|
117 |
+
"text/plain": [
|
118 |
+
"['recule',\n",
|
119 |
+
" 'tournedroite',\n",
|
120 |
+
" 'arretetoi',\n",
|
121 |
+
" 'tournegauche',\n",
|
122 |
+
" 'gauche',\n",
|
123 |
+
" 'avance',\n",
|
124 |
+
" 'droite']"
|
125 |
+
]
|
126 |
+
},
|
127 |
+
"execution_count": 29,
|
128 |
+
"metadata": {},
|
129 |
+
"output_type": "execute_result"
|
130 |
+
}
|
131 |
+
],
|
132 |
+
"source": [
|
133 |
+
"list(dataset[\"ground_truth\"].unique())"
|
134 |
+
]
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"cell_type": "code",
|
138 |
+
"execution_count": 30,
|
139 |
+
"metadata": {},
|
140 |
+
"outputs": [],
|
141 |
+
"source": [
|
142 |
+
"# 2-Train and split\n",
|
143 |
+
"from sklearn.model_selection import train_test_split\n",
|
144 |
+
"dataset_train, dataset_test = train_test_split(dataset, random_state=0)\n",
|
145 |
+
"\n",
|
146 |
+
"X_train = to_numpy(dataset_train[\"y_uniform\"])\n",
|
147 |
+
"y_train = to_numpy(dataset_train[\"ground_truth\"])\n",
|
148 |
+
"X_test = to_numpy(dataset_test[\"y_uniform\"])\n",
|
149 |
+
"y_test = to_numpy(dataset_test[\"ground_truth\"])"
|
150 |
+
]
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"cell_type": "markdown",
|
154 |
+
"metadata": {},
|
155 |
+
"source": [
|
156 |
+
"# 2 - Preprocessing"
|
157 |
+
]
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"cell_type": "code",
|
161 |
+
"execution_count": 31,
|
162 |
+
"metadata": {},
|
163 |
+
"outputs": [],
|
164 |
+
"source": [
|
165 |
+
"only_mffc_transform = Pipeline(\n",
|
166 |
+
" steps=[\n",
|
167 |
+
" (\"mfcc\", MfccTransformer(N_MFCC=N_MFCC, reshape_output=False, hop_length=HOP_LENGHT)),\n",
|
168 |
+
" (\"torch\", TorchTransform())\n",
|
169 |
+
" ]\n",
|
170 |
+
")\n",
|
171 |
+
"\n",
|
172 |
+
"only_mffc_transform.fit(X_train)\n",
|
173 |
+
"\n",
|
174 |
+
"X_train_mfcc_torch = only_mffc_transform.transform(X_train)\n",
|
175 |
+
"X_test_mfcc_torch = only_mffc_transform.transform(X_test)"
|
176 |
+
]
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"cell_type": "code",
|
180 |
+
"execution_count": 32,
|
181 |
+
"metadata": {},
|
182 |
+
"outputs": [],
|
183 |
+
"source": [
|
184 |
+
"# Train a LabelEncoder (if needed)\n",
|
185 |
+
"label_encoder = LabelEncoder()\n",
|
186 |
+
"label_encoder.fit(y_train)\n",
|
187 |
+
"y_train_enc = label_encoder.transform(y_train)\n",
|
188 |
+
"y_test_enc = label_encoder.transform(y_test)"
|
189 |
+
]
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"cell_type": "markdown",
|
193 |
+
"metadata": {},
|
194 |
+
"source": [
|
195 |
+
"# 3 - ResNet"
|
196 |
+
]
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"cell_type": "code",
|
200 |
+
"execution_count": 33,
|
201 |
+
"metadata": {},
|
202 |
+
"outputs": [],
|
203 |
+
"source": [
|
204 |
+
"if hasattr(torch, \"has_mps\") and torch.has_mps:\n",
|
205 |
+
" device = torch.device(\"mps\")\n",
|
206 |
+
"elif hasattr(torch, \"has_cuda\") and torch.has_cuda:\n",
|
207 |
+
" device = torch.device(\"cuda\")\n",
|
208 |
+
"else:\n",
|
209 |
+
" device = torch.device(\"cpu\")"
|
210 |
+
]
|
211 |
+
},
|
212 |
+
{
|
213 |
+
"cell_type": "markdown",
|
214 |
+
"metadata": {},
|
215 |
+
"source": [
|
216 |
+
"## 3.1 - nn.Module"
|
217 |
+
]
|
218 |
+
},
|
219 |
+
{
|
220 |
+
"cell_type": "code",
|
221 |
+
"execution_count": 34,
|
222 |
+
"metadata": {},
|
223 |
+
"outputs": [],
|
224 |
+
"source": [
|
225 |
+
"# from resnet import ResNet"
|
226 |
+
]
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"cell_type": "markdown",
|
230 |
+
"metadata": {},
|
231 |
+
"source": [
|
232 |
+
"## 3.2 - Train"
|
233 |
+
]
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"cell_type": "code",
|
237 |
+
"execution_count": 35,
|
238 |
+
"metadata": {},
|
239 |
+
"outputs": [
|
240 |
+
{
|
241 |
+
"name": "stdout",
|
242 |
+
"output_type": "stream",
|
243 |
+
"text": [
|
244 |
+
" epoch train_loss dur\n",
|
245 |
+
"------- ------------ ------\n",
|
246 |
+
" 1 \u001b[36m2.8646\u001b[0m 0.4461\n",
|
247 |
+
" 2 \u001b[36m1.9534\u001b[0m 0.4322\n",
|
248 |
+
" 3 \u001b[36m1.8164\u001b[0m 0.4331\n",
|
249 |
+
" 4 \u001b[36m1.6889\u001b[0m 0.4318\n",
|
250 |
+
" 5 \u001b[36m1.5808\u001b[0m 0.4329\n",
|
251 |
+
" 6 \u001b[36m1.4659\u001b[0m 0.4355\n",
|
252 |
+
" 7 \u001b[36m1.2894\u001b[0m 0.4285\n",
|
253 |
+
" 8 1.3207 0.4280\n",
|
254 |
+
" 9 \u001b[36m1.1546\u001b[0m 0.4274\n",
|
255 |
+
" 10 \u001b[36m1.0586\u001b[0m 0.4287\n",
|
256 |
+
" 11 \u001b[36m1.0195\u001b[0m 0.4313\n",
|
257 |
+
" 12 \u001b[36m0.8246\u001b[0m 0.4302\n",
|
258 |
+
" 13 \u001b[36m0.7612\u001b[0m 0.4330\n",
|
259 |
+
" 14 \u001b[36m0.7296\u001b[0m 0.4315\n",
|
260 |
+
" 15 \u001b[36m0.6690\u001b[0m 0.4293\n",
|
261 |
+
" 16 \u001b[36m0.6205\u001b[0m 0.4291\n",
|
262 |
+
" 17 \u001b[36m0.5764\u001b[0m 0.4290\n",
|
263 |
+
" 18 \u001b[36m0.4839\u001b[0m 0.4284\n",
|
264 |
+
" 19 0.4984 0.4314\n",
|
265 |
+
" 20 \u001b[36m0.4666\u001b[0m 0.4324\n",
|
266 |
+
" 21 \u001b[36m0.4132\u001b[0m 0.4322\n",
|
267 |
+
" 22 0.4440 0.4300\n",
|
268 |
+
" 23 0.4463 0.4300\n",
|
269 |
+
" 24 \u001b[36m0.4075\u001b[0m 0.4287\n",
|
270 |
+
" 25 \u001b[36m0.3908\u001b[0m 0.4282\n",
|
271 |
+
" 26 \u001b[36m0.3759\u001b[0m 0.4278\n",
|
272 |
+
" 27 \u001b[36m0.3612\u001b[0m 0.4296\n",
|
273 |
+
" 28 \u001b[36m0.3189\u001b[0m 0.4281\n",
|
274 |
+
" 29 0.3489 0.4308\n",
|
275 |
+
" 30 0.3308 0.4301\n",
|
276 |
+
" 31 0.3353 0.4299\n",
|
277 |
+
" 32 \u001b[36m0.3074\u001b[0m 0.4298\n",
|
278 |
+
" 33 0.3339 0.4350\n",
|
279 |
+
" 34 \u001b[36m0.2921\u001b[0m 0.4383\n",
|
280 |
+
" 35 \u001b[36m0.2852\u001b[0m 0.4345\n",
|
281 |
+
" 36 0.3170 0.4334\n",
|
282 |
+
" 37 0.2853 0.4304\n",
|
283 |
+
" 38 0.2857 0.4307\n",
|
284 |
+
" 39 \u001b[36m0.2607\u001b[0m 0.4310\n",
|
285 |
+
" 40 0.2765 0.4292\n",
|
286 |
+
" 41 0.2831 0.4305\n",
|
287 |
+
" 42 0.2836 0.4295\n",
|
288 |
+
" 43 0.2742 0.4307\n",
|
289 |
+
" 44 0.2653 0.4302\n",
|
290 |
+
" 45 \u001b[36m0.2370\u001b[0m 0.4335\n",
|
291 |
+
" 46 0.2475 0.4292\n",
|
292 |
+
" 47 0.2692 0.4329\n",
|
293 |
+
" 48 0.2657 0.4306\n",
|
294 |
+
" 49 0.2875 0.4305\n",
|
295 |
+
" 50 0.2839 0.4315\n",
|
296 |
+
" 51 0.2555 0.4307\n",
|
297 |
+
" 52 0.2794 0.4332\n",
|
298 |
+
" 53 \u001b[36m0.2272\u001b[0m 0.4302\n",
|
299 |
+
" 54 0.2519 0.4305\n",
|
300 |
+
" 55 0.2388 0.4307\n",
|
301 |
+
" 56 0.2504 0.4314\n",
|
302 |
+
" 57 0.2345 0.4328\n",
|
303 |
+
" 58 \u001b[36m0.2252\u001b[0m 0.4316\n",
|
304 |
+
" 59 0.2436 0.4329\n",
|
305 |
+
" 60 0.2297 0.4309\n",
|
306 |
+
" 61 0.2594 0.4306\n",
|
307 |
+
" 62 0.2412 0.4300\n",
|
308 |
+
" 63 0.2399 0.4319\n",
|
309 |
+
" 64 0.2600 0.4334\n",
|
310 |
+
" 65 0.2599 0.4304\n",
|
311 |
+
" 66 0.2360 0.4317\n",
|
312 |
+
" 67 0.2537 0.4301\n",
|
313 |
+
" 68 0.2268 0.4299\n",
|
314 |
+
" 69 0.2436 0.4301\n",
|
315 |
+
" 70 \u001b[36m0.2193\u001b[0m 0.4308\n",
|
316 |
+
" 71 0.2284 0.4322\n",
|
317 |
+
" 72 0.2339 0.4317\n",
|
318 |
+
" 73 0.2330 0.4331\n",
|
319 |
+
" 74 \u001b[36m0.2063\u001b[0m 0.4327\n",
|
320 |
+
" 75 0.2568 0.4332\n",
|
321 |
+
" 76 0.2372 0.4324\n",
|
322 |
+
" 77 0.2249 0.4327\n",
|
323 |
+
" 78 0.2449 0.4314\n",
|
324 |
+
" 79 0.2455 0.4310\n",
|
325 |
+
" 80 \u001b[36m0.2003\u001b[0m 0.4321\n",
|
326 |
+
" 81 0.2172 0.4318\n",
|
327 |
+
" 82 0.2278 0.4333\n",
|
328 |
+
" 83 0.2178 0.4334\n",
|
329 |
+
" 84 0.2240 0.4312\n",
|
330 |
+
" 85 0.2329 0.4338\n",
|
331 |
+
" 86 0.2267 0.4326\n",
|
332 |
+
" 87 0.2479 0.4341\n",
|
333 |
+
" 88 0.2266 0.4355\n",
|
334 |
+
" 89 0.2541 0.4350\n",
|
335 |
+
" 90 0.2167 0.4324\n",
|
336 |
+
" 91 0.2282 0.4353\n",
|
337 |
+
" 92 0.2097 0.4367\n",
|
338 |
+
" 93 0.2038 0.4351\n",
|
339 |
+
" 94 0.2078 0.4372\n",
|
340 |
+
" 95 0.2437 0.4344\n",
|
341 |
+
" 96 0.2283 0.4333\n",
|
342 |
+
" 97 0.2263 0.4329\n",
|
343 |
+
" 98 0.2146 0.4346\n",
|
344 |
+
" 99 0.2238 0.4323\n",
|
345 |
+
" 100 0.2035 0.4348\n",
|
346 |
+
" 101 0.2287 0.4348\n",
|
347 |
+
" 102 0.2231 0.4328\n",
|
348 |
+
" 103 0.2171 0.4326\n",
|
349 |
+
" 104 0.2417 0.4329\n",
|
350 |
+
"Stopping since train_loss has not improved in the last 25 epochs.\n",
|
351 |
+
"0.941908713692946\n"
|
352 |
+
]
|
353 |
+
}
|
354 |
+
],
|
355 |
+
"source": [
|
356 |
+
"# Define net\n",
|
357 |
+
"n_labels = np.unique(dataset.ground_truth).size\n",
|
358 |
+
"net = ResNet(in_channels=1, num_classes=n_labels)\n",
|
359 |
+
"\n",
|
360 |
+
"# Define model\n",
|
361 |
+
"model = skorch.NeuralNetClassifier(\n",
|
362 |
+
" module=net,\n",
|
363 |
+
" criterion=nn.CrossEntropyLoss(),\n",
|
364 |
+
" callbacks=[skorch.callbacks.EarlyStopping(monitor=\"train_loss\", patience=25)],\n",
|
365 |
+
" max_epochs=200,\n",
|
366 |
+
" lr=0.01,\n",
|
367 |
+
" batch_size=128,\n",
|
368 |
+
" train_split=None,\n",
|
369 |
+
" device=device,\n",
|
370 |
+
")\n",
|
371 |
+
"\n",
|
372 |
+
"model.check_data(X_train_mfcc_torch, y_train_enc)\n",
|
373 |
+
"model.fit(X_train_mfcc_torch, y_train_enc)\n",
|
374 |
+
"\n",
|
375 |
+
"print(model.score(X_test_mfcc_torch, y_test_enc))"
|
376 |
+
]
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"cell_type": "code",
|
380 |
+
"execution_count": 39,
|
381 |
+
"metadata": {},
|
382 |
+
"outputs": [
|
383 |
+
{
|
384 |
+
"data": {
|
385 |
+
"text/plain": [
|
386 |
+
"['./model/HOP_LENGHT.joblib']"
|
387 |
+
]
|
388 |
+
},
|
389 |
+
"execution_count": 39,
|
390 |
+
"metadata": {},
|
391 |
+
"output_type": "execute_result"
|
392 |
+
}
|
393 |
+
],
|
394 |
+
"source": [
|
395 |
+
"from joblib import dump, load\n",
|
396 |
+
"\n",
|
397 |
+
"dump(model, './model/model.joblib') \n",
|
398 |
+
"dump(only_mffc_transform, './model/only_mffc_transform.joblib') \n",
|
399 |
+
"dump(label_encoder, './model/label_encoder.joblib')\n",
|
400 |
+
"dump(SAMPLE_RATE, \"./model/SAMPLE_RATE.joblib\")\n",
|
401 |
+
"dump(METHOD, \"./model/METHOD.joblib\")\n",
|
402 |
+
"dump(MAX_TIME, \"./model/MAX_TIME.joblib\")\n",
|
403 |
+
"dump(N_MFCC, \"./model/N_MFCC.joblib\")\n",
|
404 |
+
"dump(HOP_LENGHT, \"./model/HOP_LENGHT.joblib\")"
|
405 |
+
]
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"cell_type": "code",
|
409 |
+
"execution_count": 40,
|
410 |
+
"metadata": {},
|
411 |
+
"outputs": [],
|
412 |
+
"source": [
|
413 |
+
"model = load('./model/model.joblib') \n",
|
414 |
+
"only_mffc_transform = load('./model/only_mffc_transform.joblib') \n",
|
415 |
+
"label_encoder = load('./model/label_encoder.joblib') \n",
|
416 |
+
"SAMPLE_RATE = load(\"./model/SAMPLE_RATE.joblib\")\n",
|
417 |
+
"METHOD = load(\"./model/METHOD.joblib\")\n",
|
418 |
+
"MAX_TIME = load(\"./model/MAX_TIME.joblib\")\n",
|
419 |
+
"N_MFCC = load(\"./model/N_MFCC.joblib\")\n",
|
420 |
+
"HOP_LENGHT = load(\"./model/HOP_LENGHT.joblib\")\n",
|
421 |
+
"\n",
|
422 |
+
"sklearn_model = Pipeline(\n",
|
423 |
+
" steps=[\n",
|
424 |
+
" (\"mfcc\", only_mffc_transform),\n",
|
425 |
+
" (\"model\", model)\n",
|
426 |
+
" ]\n",
|
427 |
+
" )\n",
|
428 |
+
"\n",
|
429 |
+
"uniform_lambda = lambda y, sr: uniformize(y, sr, METHOD, MAX_TIME)"
|
430 |
+
]
|
431 |
+
},
|
432 |
+
{
|
433 |
+
"cell_type": "code",
|
434 |
+
"execution_count": 43,
|
435 |
+
"metadata": {},
|
436 |
+
"outputs": [
|
437 |
+
{
|
438 |
+
"ename": "",
|
439 |
+
"evalue": "",
|
440 |
+
"output_type": "error",
|
441 |
+
"traceback": [
|
442 |
+
"\u001b[1;31mThe Kernel crashed while executing code in the the current cell or a previous cell. Please review the code in the cell(s) to identify a possible cause of the failure. Click <a href='https://aka.ms/vscodeJupyterKernelCrash'>here</a> for more info. View Jupyter <a href='command:jupyter.viewOutput'>log</a> for further details."
|
443 |
+
]
|
444 |
+
}
|
445 |
+
],
|
446 |
+
"source": [
|
447 |
+
"title = r\"ResNet 9\"\n",
|
448 |
+
"\n",
|
449 |
+
"description = r\"\"\"\n",
|
450 |
+
"<center>\n",
|
451 |
+
"The resnet9 model was trained to classify drone speech command.\n",
|
452 |
+
"<img src=\"http://zeus.blanchon.cc/dropshare/modia.png\" width=200px>\n",
|
453 |
+
"</center>\n",
|
454 |
+
"\"\"\"\n",
|
455 |
+
"article = r\"\"\"\n",
|
456 |
+
"- [Deep Residual Learning for Image Recognition](https://arxiv.org/pdf/1512.03385)\n",
|
457 |
+
"\"\"\"\n",
|
458 |
+
"\n",
|
459 |
+
"demo_men = gr.Interface(\n",
|
460 |
+
" title = title,\n",
|
461 |
+
" description = description,\n",
|
462 |
+
" article = article, \n",
|
463 |
+
" fn=lambda data: predict_gradio(\n",
|
464 |
+
" data=data, \n",
|
465 |
+
" uniform_lambda=uniform_lambda, \n",
|
466 |
+
" sklearn_model=sklearn_model,\n",
|
467 |
+
" label_transform=label_encoder,\n",
|
468 |
+
" target_sr=SAMPLE_RATE),\n",
|
469 |
+
" inputs = gr.Audio(source=\"microphone\", type=\"numpy\"),\n",
|
470 |
+
" outputs = gr.Label(),\n",
|
471 |
+
" # allow_flagging = \"manual\",\n",
|
472 |
+
" # flagging_options = ['recule', 'tournedroite', 'arretetoi', 'tournegauche', 'gauche', 'avance', 'droite'],\n",
|
473 |
+
" # flagging_dir = \"./flag/men\"\n",
|
474 |
+
")"
|
475 |
+
]
|
476 |
+
}
|
477 |
+
],
|
478 |
+
"metadata": {
|
479 |
+
"kernelspec": {
|
480 |
+
"display_name": "Python 3.10.4 ('ml')",
|
481 |
+
"language": "python",
|
482 |
+
"name": "python3"
|
483 |
+
},
|
484 |
+
"language_info": {
|
485 |
+
"codemirror_mode": {
|
486 |
+
"name": "ipython",
|
487 |
+
"version": 3
|
488 |
+
},
|
489 |
+
"file_extension": ".py",
|
490 |
+
"mimetype": "text/x-python",
|
491 |
+
"name": "python",
|
492 |
+
"nbconvert_exporter": "python",
|
493 |
+
"pygments_lexer": "ipython3",
|
494 |
+
"version": "3.10.4"
|
495 |
+
},
|
496 |
+
"vscode": {
|
497 |
+
"interpreter": {
|
498 |
+
"hash": "f1f34988cae7bd54e626a86efbacac2b339eeffffea662e9af12f610fca26db7"
|
499 |
+
}
|
500 |
+
}
|
501 |
+
},
|
502 |
+
"nbformat": 4,
|
503 |
+
"nbformat_minor": 2
|
504 |
+
}
|
dataloading.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pandas as pd
|
3 |
+
|
4 |
+
import librosa
|
5 |
+
|
6 |
+
from pathlib import Path
|
7 |
+
from typing import Callable, Literal, Optional
|
8 |
+
|
9 |
+
def load_dataset(
|
10 |
+
paths: list[str],
|
11 |
+
remove_label: list[str] = [""],
|
12 |
+
sr: int = 22050,
|
13 |
+
method : Literal["fix_length", "time_stretch"] = "fix_length",
|
14 |
+
max_time: float = 4.0) -> tuple[pd.DataFrame, Callable[[np.ndarray, int], np.ndarray]]:
|
15 |
+
"""Folder dataset in memory loader (return fully loaded pandas dataframe).
|
16 |
+
- For sklearn, load the whole dataset if possible otherwise use `proportion` to only load a part of the dataset.
|
17 |
+
- For pytorch, load the whole dataset if possible otherwise use `proportion` to only load a part of the dataset.
|
18 |
+
And convert output to Tensor on the fly.
|
19 |
+
|
20 |
+
Use `to_numpy(df.y)` to extract a numpy matrix with a (n_row, ...) shape.
|
21 |
+
|
22 |
+
Expect a dataset folder structure as: paths = [paths1, paths2, ...]
|
23 |
+
- paths1
|
24 |
+
- sub1
|
25 |
+
- blabla_GroundTruth1.wav
|
26 |
+
- blabla_GroundTruth2.wav
|
27 |
+
- sub2
|
28 |
+
- ...
|
29 |
+
...
|
30 |
+
- ...
|
31 |
+
|
32 |
+
Args:
|
33 |
+
paths (list[Path]): list of dataset directory to parse.
|
34 |
+
remove_label (list[str], optional): list of label to remove. Defaults to None.. Defaults to [""].
|
35 |
+
shuffle (bool, optional): True to suffle the dataframe. Defaults to True.
|
36 |
+
proportion (float, optional): Proportion of file to load. Defaults to 1.0.
|
37 |
+
sr (int, optional): Sample Rate to resample audio file. Defaults to 22050.
|
38 |
+
method (Literal['fix_length';, 'time_stretch'], optional): uniformization method to apply. Defaults to "fix_length".
|
39 |
+
max_time (float, optional): Common audio duration . Defaults to 4.0.
|
40 |
+
|
41 |
+
Returns:
|
42 |
+
df (pd.DataFrame): A pd.DataFrame with such define column:
|
43 |
+
- absolute_path (str): file-system absolute path of the .wav file.
|
44 |
+
- labels (list[str]): list of labels defining the sound file (ie, subdirectories and post _ filename).
|
45 |
+
- ground_truth (str): ground_truth label meaning the last one after _ in the sound filename.
|
46 |
+
- y_original_signal (np.ndarray): sound signal normalize as `float64` and resample with the given sr by `librosa.load`
|
47 |
+
- y_original_duration (float): y_original_signal signal duration.
|
48 |
+
- y_uniform (np.ndarray): uniformized sound signal compute from y_original_signal using the chosen uniform method.
|
49 |
+
uniform_transform (Callable[[np.ndarray, int], np.ndarray]]): A lambda function to uniformized an audio signal as the same in df.
|
50 |
+
"""
|
51 |
+
data = []
|
52 |
+
uniform_transform = lambda y, sr: uniformize(y, sr, method, max_time)
|
53 |
+
for path in paths:
|
54 |
+
path = Path(path)
|
55 |
+
for wav_file in path.rglob("*.wav"):
|
56 |
+
wav_file_dict = dict()
|
57 |
+
absolute_path = wav_file.absolute()
|
58 |
+
*labels, label = absolute_path.relative_to(path.absolute()).parts
|
59 |
+
label = label.replace(".wav", "").split("_")
|
60 |
+
labels.extend(label)
|
61 |
+
ground_truth = labels[-1]
|
62 |
+
if ground_truth not in remove_label:
|
63 |
+
y_original, sr = librosa.load(path=absolute_path, sr=sr)
|
64 |
+
# WARINING : Convert the sampling rate to 22.05 KHz,
|
65 |
+
# normalize the bit depth between -1 and 1 and convert stereo to mono
|
66 |
+
wav_file_dict["absolute_path"] = absolute_path
|
67 |
+
wav_file_dict["labels"] = labels
|
68 |
+
wav_file_dict["ground_truth"] = ground_truth
|
69 |
+
## Save original sound signal
|
70 |
+
wav_file_dict["y_original_signal"] = y_original
|
71 |
+
duration = librosa.get_duration(y=y_original, sr=sr)
|
72 |
+
wav_file_dict["y_original_duration"] = duration
|
73 |
+
## Save uniformized sound signal
|
74 |
+
wav_file_dict["y_uniform"] = uniform_transform(y_original, sr)
|
75 |
+
data.append(wav_file_dict)
|
76 |
+
df = pd.DataFrame(data)
|
77 |
+
return df, uniform_transform
|
78 |
+
|
79 |
+
def uniformize(
|
80 |
+
audio: np.ndarray,
|
81 |
+
sr: int,
|
82 |
+
method: Literal["fix_length", "time_stretch"] = "fix_length",
|
83 |
+
max_time: float = 4.0
|
84 |
+
):
|
85 |
+
if method == "fix_length":
|
86 |
+
return librosa.util.fix_length(audio, size=int(np.ceil(max_time*sr)))
|
87 |
+
elif method == "time_stretch":
|
88 |
+
duration = librosa.get_duration(y=audio, sr=sr)
|
89 |
+
return librosa.effects.time_stretch(audio, rate=duration/max_time)
|
90 |
+
|
91 |
+
|
92 |
+
def to_numpy(ds: pd.Series) -> np.ndarray:
|
93 |
+
"""Transform a pd.Series (ie columns slice) in a numpy array with the shape (n_row, cell_array.flatten()).
|
94 |
+
|
95 |
+
Args:
|
96 |
+
df (pd.Series): Columns to transform in numpy.
|
97 |
+
|
98 |
+
Returns:
|
99 |
+
np.ndarray: resulting np.array from the ds pd.Series.
|
100 |
+
"""
|
101 |
+
numpy_df = np.stack([*ds.to_numpy()])
|
102 |
+
C, *o = numpy_df.shape
|
103 |
+
|
104 |
+
if o:
|
105 |
+
return numpy_df.reshape(numpy_df.shape[0], np.prod(o))
|
106 |
+
else:
|
107 |
+
return numpy_df.reshape(numpy_df.shape[0])
|
gradio_utils.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from typing import Callable, Optional
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
|
7 |
+
|
8 |
+
import librosa
|
9 |
+
|
10 |
+
import gradio as gr
|
11 |
+
|
12 |
+
def predict_gradio(data: tuple[int, np.ndarray],
|
13 |
+
uniform_lambda: Callable[[np.ndarray, int], np.ndarray],
|
14 |
+
sklearn_model,
|
15 |
+
label_transform,
|
16 |
+
target_sr: int = 22_050) -> Optional[dict]:
|
17 |
+
if data is None:
|
18 |
+
return
|
19 |
+
|
20 |
+
classes = sklearn_model.classes_
|
21 |
+
if label_transform is not None:
|
22 |
+
classes = label_transform.inverse_transform(classes)
|
23 |
+
|
24 |
+
|
25 |
+
y, sr = data[1], data[0]
|
26 |
+
y_original_signal = load_as_librosa(y, sr, target_sr=target_sr)
|
27 |
+
y_uniform = uniform_lambda(y_original_signal, target_sr).astype(np.float32)
|
28 |
+
prediction = sklearn_model.predict_proba(y_uniform.reshape(1, -1))
|
29 |
+
result = {str(label): float(confidence) for (
|
30 |
+
label, confidence) in zip(classes, prediction.flatten())}
|
31 |
+
return result
|
32 |
+
|
33 |
+
def load_as_librosa(y: np.ndarray, sr: int, target_sr: int = 22050) -> np.ndarray:
|
34 |
+
data_dtype = y.dtype
|
35 |
+
dtype_min = np.iinfo(data_dtype).min
|
36 |
+
dtype_max = np.iinfo(data_dtype).max
|
37 |
+
dtype_range = np.abs(dtype_max-dtype_min)
|
38 |
+
y_normalize = (y.astype(np.float32)-dtype_min)/dtype_range
|
39 |
+
y_normalize_resample = librosa.resample(y=y_normalize,
|
40 |
+
orig_sr=sr,
|
41 |
+
target_sr=target_sr)
|
42 |
+
return y_normalize_resample
|
model/HOP_LENGHT.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5ed7bcd9e9d07c9918817127d9d4d3862f00d680cf13572fd8776d611bddd7ee
|
3 |
+
size 15
|
model/MAX_TIME.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5c63e7c444792b99fe2d588a2454f6a5b45f23e4973a77e6f2e3e280d5385bd1
|
3 |
+
size 21
|
model/METHOD.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0225bfd3de4895f2472fde5df0f7f9d67b1b922e62e84395a41fefb3122a4d09
|
3 |
+
size 27
|
model/N_MFCC.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4e148c4bd8680b2de4785d81d31a1e4fbbd65c87e687e64c68d68c52aa2c4004
|
3 |
+
size 5
|
model/SAMPLE_RATE.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:510a2ce6eba70c0d21f882833ca726e75e0d1a7cbae3badd55f96c0a8e909ede
|
3 |
+
size 15
|
model/label_encoder.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f350bf3ad2da734f600262b0384aa61125de535a3eff8b80640af0f06e319246
|
3 |
+
size 617
|
model/model.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c88130d5500b9e58fb2bc8e5b3cce918c83fdb94c2361d991e24f79452328b00
|
3 |
+
size 53219183
|
model/only_mffc_transform.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5d34fac514bbe21f95e0b62b679e86cced3a7b496c5bd12f087516d55bb9be71
|
3 |
+
size 255
|
preprocessing.py
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import librosa
|
4 |
+
|
5 |
+
from sklearn.base import BaseEstimator, TransformerMixin
|
6 |
+
from typing import Callable, Optional
|
7 |
+
|
8 |
+
class ReductionTransformer(BaseEstimator, TransformerMixin):
|
9 |
+
def __init__(self, windows_number: int = 300, statistique: Callable[[np.ndarray], np.ndarray] = np.mean):
|
10 |
+
self.windows_number = windows_number
|
11 |
+
self.statistique = statistique
|
12 |
+
|
13 |
+
def fit(self, X: np.ndarray, y: Optional[np.ndarray] = None):
|
14 |
+
return self
|
15 |
+
|
16 |
+
def fit_transform(self, X: np.ndarray, y: Optional[np.ndarray] = None) -> np.ndarray:
|
17 |
+
self.fit(X, y)
|
18 |
+
return self.transform(X, y)
|
19 |
+
|
20 |
+
def transform(self, X: np.ndarray, y: Optional[np.ndarray] = None) -> np.ndarray:
|
21 |
+
X_ = X.copy()
|
22 |
+
*c_, size_ = X_.shape
|
23 |
+
windows_size_ = size_//self.windows_number
|
24 |
+
metrique_clip = X_[..., :self.windows_number*windows_size_]
|
25 |
+
return np.apply_along_axis(self.statistique,
|
26 |
+
axis=-1,
|
27 |
+
arr=metrique_clip.reshape((*c_, self.windows_number, windows_size_)))
|
28 |
+
|
29 |
+
def inverse_transform(self, X: np.ndarray) -> np.ndarray:
|
30 |
+
raise NotImplementedError
|
31 |
+
|
32 |
+
class MeanTransformer(BaseEstimator, TransformerMixin):
|
33 |
+
def __init__(self, windows_number: int = 300):
|
34 |
+
self.windows_number = windows_number
|
35 |
+
self.windows_size = 0
|
36 |
+
|
37 |
+
def fit(self, X: np.ndarray, y: Optional[np.ndarray] = None):
|
38 |
+
return self
|
39 |
+
|
40 |
+
def fit_transform(self, X: np.ndarray, y: Optional[np.ndarray] = None) -> np.ndarray:
|
41 |
+
self.fit(X, y)
|
42 |
+
return self.transform(X, y)
|
43 |
+
|
44 |
+
def transform(self, X: np.ndarray, y: Optional[np.ndarray] = None) -> np.ndarray:
|
45 |
+
X_ = X.copy()
|
46 |
+
*c_, size_ = X_.shape
|
47 |
+
windows_size_ = size_//self.windows_number
|
48 |
+
self.windows_size = windows_size_
|
49 |
+
metrique_clip = X_[..., :self.windows_number*windows_size_]
|
50 |
+
return np.mean(metrique_clip.reshape((*c_, self.windows_number, windows_size_)), axis=-1)
|
51 |
+
|
52 |
+
def inverse_transform(self, X: np.ndarray) -> np.ndarray:
|
53 |
+
original_size = self.windows_size*self.windows_number
|
54 |
+
X_reconstruct = np.interp(
|
55 |
+
x = np.arange(start=0, stop=original_size, step=1),
|
56 |
+
xp = np.arange(start=0, stop=original_size, step=self.windows_size),
|
57 |
+
fp = X
|
58 |
+
)
|
59 |
+
return X_reconstruct
|
60 |
+
|
61 |
+
class StdTransformer(BaseEstimator, TransformerMixin):
|
62 |
+
def __init__(self, windows_number: int = 300):
|
63 |
+
self.windows_number = windows_number
|
64 |
+
|
65 |
+
def fit(self, X: np.ndarray, y: Optional[np.ndarray] = None):
|
66 |
+
return self
|
67 |
+
|
68 |
+
def fit_transform(self, X: np.ndarray, y: Optional[np.ndarray] = None) -> np.ndarray:
|
69 |
+
self.fit(X, y)
|
70 |
+
return self.transform(X, y)
|
71 |
+
|
72 |
+
def transform(self, X: np.ndarray, y: Optional[np.ndarray] = None) -> np.ndarray:
|
73 |
+
X_ = X.copy()
|
74 |
+
*c_, size_ = X_.shape
|
75 |
+
windows_size_ = size_//self.windows_number
|
76 |
+
metrique_clip = X_[..., :self.windows_number*windows_size_]
|
77 |
+
return np.std(metrique_clip.reshape((*c_, self.windows_number, windows_size_)), axis=-1)
|
78 |
+
|
79 |
+
def inverse_transform(self, X: np.ndarray) -> np.ndarray:
|
80 |
+
raise NotImplementedError
|
81 |
+
|
82 |
+
class MfccTransformer(BaseEstimator, TransformerMixin):
|
83 |
+
def __init__(self, sr: int = 22050, N_MFCC: int = 12, hop_length: int = 1024, reshape_output: bool = True):
|
84 |
+
self.sr = sr
|
85 |
+
self.N_MFCC = N_MFCC
|
86 |
+
self.hop_length = hop_length
|
87 |
+
self.reshape_output = reshape_output
|
88 |
+
|
89 |
+
def reshape(self, X: np.ndarray) -> np.ndarray:
|
90 |
+
X_ = X.copy()
|
91 |
+
c_, *_ = X_.shape
|
92 |
+
return X_.reshape(c_, -1, self.N_MFCC)
|
93 |
+
|
94 |
+
def fit(self, X: np.ndarray, y: Optional[np.ndarray] = None):
|
95 |
+
return self
|
96 |
+
|
97 |
+
def fit_transform(self, X: np.ndarray, y: Optional[np.ndarray] = None) -> np.ndarray:
|
98 |
+
self.fit(X, y)
|
99 |
+
return self.transform(X, y)
|
100 |
+
|
101 |
+
def transform(self, X: np.ndarray, y: Optional[np.ndarray] = None) -> np.ndarray:
|
102 |
+
X_ = X.copy()
|
103 |
+
c_, *_ = X_.shape
|
104 |
+
mfcc = librosa.feature.mfcc(y=X_,
|
105 |
+
sr=self.sr,
|
106 |
+
hop_length=self.hop_length,
|
107 |
+
n_mfcc=self.N_MFCC
|
108 |
+
)
|
109 |
+
if self.reshape_output:
|
110 |
+
mfcc = mfcc.reshape(c_, -1)
|
111 |
+
|
112 |
+
return mfcc
|
113 |
+
|
114 |
+
def inverse_transform(self, X: np.ndarray) -> np.ndarray:
|
115 |
+
X_reconstruct = librosa.feature.inverse.mfcc_to_audio(
|
116 |
+
mfcc = X,
|
117 |
+
n_mels = self.N_MFCC,
|
118 |
+
)
|
119 |
+
return X_reconstruct
|
120 |
+
|
121 |
+
class MelTransformer(BaseEstimator, TransformerMixin):
|
122 |
+
def __init__(self, sr: int = 22050, N_MEL: int = 12, hop_length: int = 1024, reshape_output: bool = True):
|
123 |
+
self.sr = sr
|
124 |
+
self.N_MEL = N_MEL
|
125 |
+
self.hop_length = hop_length
|
126 |
+
self.reshape_output = reshape_output
|
127 |
+
|
128 |
+
def reshape(self, X: np.ndarray) -> np.ndarray:
|
129 |
+
X_ = X.copy()
|
130 |
+
c_, *_ = X_.shape
|
131 |
+
return X_.reshape(c_, -1, self.N_MEL)
|
132 |
+
|
133 |
+
def fit(self, X: np.ndarray, y: Optional[np.ndarray] = None):
|
134 |
+
return self
|
135 |
+
|
136 |
+
def fit_transform(self, X: np.ndarray, y: Optional[np.ndarray] = None) -> np.ndarray:
|
137 |
+
self.fit(X, y)
|
138 |
+
return self.transform(X, y)
|
139 |
+
|
140 |
+
def transform(self, X: np.ndarray, y: Optional[np.ndarray] = None) -> np.ndarray:
|
141 |
+
X_ = X.copy()
|
142 |
+
c_, *_ = X_.shape
|
143 |
+
mel = librosa.feature.melspectrogram(y=X,
|
144 |
+
sr=self.sr,
|
145 |
+
hop_length=self.hop_length,
|
146 |
+
n_mels=self.N_MEL
|
147 |
+
)
|
148 |
+
if self.reshape_output:
|
149 |
+
mel = mel.reshape(c_, -1)
|
150 |
+
|
151 |
+
return mel
|
152 |
+
|
153 |
+
def inverse_transform(self, X: np.ndarray) -> np.ndarray:
|
154 |
+
X_reconstruct = librosa.feature.inverse.mel_to_audio(
|
155 |
+
M = X,
|
156 |
+
sr = self.sr,
|
157 |
+
hop_length = self.hop_length
|
158 |
+
)
|
159 |
+
return X_reconstruct
|
160 |
+
|
161 |
+
class TorchTransform(BaseEstimator, TransformerMixin):
|
162 |
+
def __init__(self):
|
163 |
+
pass
|
164 |
+
|
165 |
+
def fit(self, X: np.ndarray, y: Optional[np.ndarray] = None):
|
166 |
+
return self
|
167 |
+
|
168 |
+
def fit_transform(self, X: np.ndarray, y: Optional[np.ndarray] = None) -> torch.Tensor:
|
169 |
+
self.fit(X, y)
|
170 |
+
return self.transform(X, y)
|
171 |
+
|
172 |
+
def transform(self, X: np.ndarray, y: Optional[np.ndarray] = None) -> torch.Tensor:
|
173 |
+
return torch.tensor(X).unsqueeze(dim=1)
|
174 |
+
|
175 |
+
def inverse_transform(self, X: torch.Tensor) -> np.ndarray:
|
176 |
+
return np.array(X.squeeze(dim=1))
|
177 |
+
|
178 |
+
class ShuffleTransformer(BaseEstimator, TransformerMixin):
|
179 |
+
def __init__(self, p: float = 0.005):
|
180 |
+
self.p = p
|
181 |
+
|
182 |
+
def fit(self, X: np.ndarray, y: Optional[np.ndarray] = None):
|
183 |
+
return self
|
184 |
+
|
185 |
+
def fit_transform(self, X: np.ndarray, y: Optional[np.ndarray] = None) -> np.ndarray:
|
186 |
+
self.fit(X, y)
|
187 |
+
return self.transform(X, y)
|
188 |
+
|
189 |
+
def transform(self, X: np.ndarray, y: Optional[np.ndarray] = None) -> np.ndarray:
|
190 |
+
will_swap = np.random.choice(X.shape[0], int(self.p*X.shape[0]))
|
191 |
+
will_swap_with = np.random.choice(X.shape[0], int(self.p*X.shape[0]))
|
192 |
+
if hasattr(X, "copy"):
|
193 |
+
X_ = X.copy()
|
194 |
+
elif hasattr(X, "clone"):
|
195 |
+
X_ = X.clone()
|
196 |
+
else:
|
197 |
+
X_ = X
|
198 |
+
X_[will_swap, ...] = X_[will_swap_with, ...]
|
199 |
+
return X_
|
200 |
+
|
201 |
+
def inverse_transform(self, X: np.ndarray) -> np.ndarray:
|
202 |
+
raise NotImplementedError
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy
|
2 |
+
matplotlib
|
3 |
+
numpy
|
4 |
+
pandas
|
5 |
+
scikit-learn
|
6 |
+
skorch
|
7 |
+
librosa
|
8 |
+
gradio
|
resnet.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
|
5 |
+
class ResNet(nn.Module):
|
6 |
+
def __init__(self, in_channels: int, num_classes: int):
|
7 |
+
"""ResNet9"""
|
8 |
+
super().__init__()
|
9 |
+
|
10 |
+
self.conv1 = ConvBlock(in_channels, 64)
|
11 |
+
self.conv2 = ConvBlock(64, 128, pool=True)
|
12 |
+
self.res1 = nn.Sequential(
|
13 |
+
ConvBlock(128, 128),
|
14 |
+
ConvBlock(128, 128)
|
15 |
+
)
|
16 |
+
|
17 |
+
self.conv3 = ConvBlock(128, 256)
|
18 |
+
self.conv4 = ConvBlock(256, 512, pool=True)
|
19 |
+
self.res2 = nn.Sequential(
|
20 |
+
ConvBlock(512, 512),
|
21 |
+
ConvBlock(512, 512)
|
22 |
+
)
|
23 |
+
|
24 |
+
self.classifier = nn.Sequential(
|
25 |
+
nn.MaxPool2d(kernel_size=(4, 4)),
|
26 |
+
nn.AdaptiveAvgPool2d(1),
|
27 |
+
nn.Flatten(),
|
28 |
+
nn.Linear(512, 128),
|
29 |
+
nn.Dropout(0.25),
|
30 |
+
nn.Linear(128, num_classes),
|
31 |
+
nn.Dropout(0.25),
|
32 |
+
)
|
33 |
+
|
34 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
35 |
+
x = self.conv1(x)
|
36 |
+
x = self.conv2(x)
|
37 |
+
x = self.res1(x) + x #skip
|
38 |
+
x = self.conv3(x)
|
39 |
+
x = self.conv4(x)
|
40 |
+
x = self.res2(x) + x #skip
|
41 |
+
prediction = self.classifier(x)
|
42 |
+
return prediction
|
43 |
+
|
44 |
+
class ConvBlock(nn.Module):
|
45 |
+
def __init__(self, in_channels: int, out_channels: int, pool: bool = False, pool_no: int = 2):
|
46 |
+
super().__init__()
|
47 |
+
self.in_channels = in_channels
|
48 |
+
self.out_channels = out_channels
|
49 |
+
self.pool = pool
|
50 |
+
self.pool_no = pool_no
|
51 |
+
|
52 |
+
if self.pool:
|
53 |
+
self.pool_block = nn.Sequential(
|
54 |
+
nn.ReLU(inplace=True),
|
55 |
+
nn.MaxPool2d(self.pool_no)
|
56 |
+
)
|
57 |
+
else:
|
58 |
+
self.pool_block = nn.Sequential(
|
59 |
+
nn.ReLU(inplace=True),
|
60 |
+
)
|
61 |
+
|
62 |
+
self.block = nn.Sequential(
|
63 |
+
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
|
64 |
+
nn.BatchNorm2d(out_channels),
|
65 |
+
self.pool_block
|
66 |
+
)
|
67 |
+
|
68 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
69 |
+
x = self.block(x)
|
70 |
+
return x
|