File size: 11,457 Bytes
6d24ac5 8719c45 6d24ac5 8719c45 6d24ac5 bf8ba85 6d24ac5 bf8ba85 6d24ac5 bf8ba85 6d24ac5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
# Import required libraries
import os
import io
import torch
import tempfile
import numpy as np
import streamlit as st
# Import utility and custom functions
from PIL import Image
from Util.DICOM import DICOM_Utils
from Util.Custom_Model import Build_Custom_Model, reshape_transform
# Import additional MONAI and PyTorch Grad-CAM utilities
from monai.config import print_config
from monai.utils import set_determinism
from monai.networks.nets import SEResNet50
from monai.transforms import (
Activations,
EnsureChannelFirst,
AsDiscrete,
Compose,
LoadImage,
RandFlip,
RandRotate,
RandZoom,
ScaleIntensity,
AsChannelFirst,
AddChannel,
RandSpatialCrop,
ScaleIntensityRangePercentiles,
Resize,
)
from pytorch_grad_cam import GradCAM
from pytorch_grad_cam.utils.image import show_cam_on_image
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
# (Int) Random seed
SEED = 0
# (Int) Model parameters
NUM_CLASSES = 1
# (String) CT Model directory
CT_MODEL_DIRECTORY = "models/CLOTS/CT"
# (String) MRI Model directory
MRI_MODEL_DIRECTORY = "models/CLOTS/MRI"
# (Boolean) Use custom model
CUSTOM_MODEL_FLAG = True
# (List[int]) Image size
SPATIAL_SIZE = [224, 224]
# (String) CT Model file name
CT_MODEL_FILE_NAME = "best_metric_model.pth"
# (String) MRI Model file name
MRI_MODEL_FILE_NAME = "best_metric_model.pth"
# (Boolean) List model modules
LIST_MODEL_MODULES = False
# (String) Model name
CT_MODEL_NAME = "swin_base_patch4_window7_224"
# (String) Model name
MRI_MODEL_NAME = "swin_base_patch4_window7_224"
# (Float) Model inference threshold
CT_INFERENCE_THRESHOLD = 0.5
# (Float) Model inference threshold
MRI_INFERENCE_THRESHOLD = 0.5
# (Int) Display CAM Class ID
CAM_CLASS_ID = 0
# (Int) Window Center for image display
DEFAULT_CT_WINDOW_CENTER = 40
# (Int) Window Width for image display
DEFAULT_CT_WINDOW_WIDTH = 100
# (Int) Window Center for image display
DEFAULT_MRI_WINDOW_CENTER = 400
# (Int) Window Width for image display
DEFAULT_MRI_WINDOW_WIDTH = 1000
# (Int) Minimum value for Window Center
WINDOW_CENTER_MIN = -600
# (Int) Maximum value for Window Center
WINDOW_CENTER_MAX = 1000
# (Int) Minimum value for Window Width
WINDOW_WIDTH_MIN = 1
# (Int) Maximum value for Window Width
WINDOW_WIDTH_MAX = 3000
# Evaluation Transforms
eval_transforms = Compose(
[
LoadImage(image_only=True),
AsChannelFirst(),
ScaleIntensityRangePercentiles(lower=20, upper=80, b_min=0.0, b_max=1.0, clip=False, relative=True),
Resize(spatial_size=SPATIAL_SIZE)
]
)
# CAM Original Transforms
cam_original_transforms = Compose(
[
LoadImage(image_only=True),
AsChannelFirst(),
Resize(spatial_size=SPATIAL_SIZE)
]
)
# CAM Original Transforms
original_transforms = Compose(
[
LoadImage(image_only=True),
AsChannelFirst()
]
)
# Function to convert PIL Image to byte stream in PNG format for downloading
def image_to_bytes(image):
byte_stream = io.BytesIO()
image.save(byte_stream, format='PNG')
return byte_stream.getvalue()
set_determinism(seed=SEED)
torch.manual_seed(SEED)
# Parameters
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
ct_root_dir = tempfile.mkdtemp() if CT_MODEL_DIRECTORY is None else CT_MODEL_DIRECTORY
mri_root_dir = tempfile.mkdtemp() if MRI_MODEL_DIRECTORY is None else MRI_MODEL_DIRECTORY
def load_model(root_dir, model_name, model_file_name):
if CUSTOM_MODEL_FLAG:
model = Build_Custom_Model(model_name, NUM_CLASSES, pretrained=False).to(device)
else:
model = SEResNet50(spatial_dims=2, in_channels=1, num_classes=NUM_CLASSES).to(device)
model.load_state_dict(torch.load(os.path.join(root_dir, model_file_name), map_location=device)))
model.eval()
return model
ct_model = load_model(ct_root_dir, CT_MODEL_NAME, CT_MODEL_FILE_NAME)
mri_model = load_model(mri_root_dir, MRI_MODEL_NAME, MRI_MODEL_FILE_NAME)
if LIST_MODEL_MODULES:
for ct_name, _ in ct_model.named_modules():
print(ct_name)
for mri_name, _ in mri_model.named_modules():
print(mri_name)
# Initialize Streamlit
st.title("Analyze")
# Use Streamlit's number_input to adjust WINDOW_CENTER and WINDOW_WIDTH
st.sidebar.header("Windowing Parameters for DICOM")
CT_WINDOW_CENTER = st.sidebar.number_input("CT Window Center", min_value=WINDOW_CENTER_MIN, max_value=WINDOW_CENTER_MAX, value=DEFAULT_CT_WINDOW_CENTER, step=1)
CT_WINDOW_WIDTH = st.sidebar.number_input("CT Window Width", min_value=WINDOW_WIDTH_MIN, max_value=WINDOW_WIDTH_MAX, value=DEFAULT_CT_WINDOW_WIDTH, step=1)
MRI_WINDOW_CENTER = st.sidebar.number_input("MRI Window Center", min_value=WINDOW_CENTER_MIN, max_value=WINDOW_CENTER_MAX, value=DEFAULT_MRI_WINDOW_CENTER, step=1)
MRI_WINDOW_WIDTH = st.sidebar.number_input("MRI Window Width", min_value=WINDOW_WIDTH_MIN, max_value=WINDOW_WIDTH_MAX, value=DEFAULT_MRI_WINDOW_WIDTH, step=1)
uploaded_ct_file = st.file_uploader("Upload a candidate CT DICOM", type=["dcm"])
if uploaded_ct_file is not None:
# Save the uploaded file to a temporary location
with tempfile.NamedTemporaryFile(delete=False, suffix=".dcm") as temp_file:
temp_file.write(uploaded_ct_file.getvalue())
# Apply evaluation transforms to the DICOM image for model prediction
image_tensor = eval_transforms(temp_file.name).unsqueeze(0).to(device)
# Predict
with torch.no_grad():
outputs = ct_model(image_tensor).sigmoid().to("cpu").numpy()
prob = outputs[0][0]
CLOTS_CLASSIFICATION = False
if(prob >= CT_INFERENCE_THRESHOLD):
CLOTS_CLASSIFICATION=True
st.header("CT Classification")
st.subheader(f"Ischaemic Stroke : {CLOTS_CLASSIFICATION}")
st.subheader(f"Confidence : {prob * 100:.1f}%")
# Load the original DICOM image for download
download_image_tensor = original_transforms(temp_file.name).unsqueeze(0).to(device)
download_image = download_image_tensor.squeeze()
# Transform the download image and apply windowing
transformed_download_image = DICOM_Utils.transform_image_for_display(download_image)
windowed_download_image = DICOM_Utils.apply_windowing(transformed_download_image, CT_WINDOW_CENTER, CT_WINDOW_WIDTH)
# Streamlit button to trigger image download
image_data = image_to_bytes(Image.fromarray(windowed_download_image))
st.download_button(
label="Download CT Image",
data=image_data,
file_name="downloaded_ct_image.png",
mime="image/png"
)
# Load the original DICOM image for display
display_image_tensor = cam_original_transforms(temp_file.name).unsqueeze(0).to(device)
display_image = display_image_tensor.squeeze()
# Transform the image and apply windowing
transformed_image = DICOM_Utils.transform_image_for_display(display_image)
windowed_image = DICOM_Utils.apply_windowing(transformed_image, CT_WINDOW_CENTER, CT_WINDOW_WIDTH)
st.image(Image.fromarray(windowed_image), caption="Original CT Visualization", use_column_width=True)
# Expand to three channels
windowed_image = np.expand_dims(windowed_image, axis=2)
windowed_image = np.tile(windowed_image, [1, 1, 3])
# Ensure both are of float32 type
windowed_image = windowed_image.astype(np.float32)
# Normalize to [0, 1] range
windowed_image = np.float32(windowed_image) / 255
# Build the CAM (Class Activation Map)
target_layers = [ct_model.model.norm]
cam = GradCAM(model=ct_model, target_layers=target_layers, reshape_transform=reshape_transform, use_cuda=True)
grayscale_cam = cam(input_tensor=image_tensor, targets=[ClassifierOutputTarget(CAM_CLASS_ID)])
grayscale_cam = grayscale_cam[0, :]
# Now you can safely call the show_cam_on_image function
visualization = show_cam_on_image(windowed_image, grayscale_cam, use_rgb=True)
st.image(Image.fromarray(visualization), caption="CAM CT Visualization", use_column_width=True)
uploaded_mri_file = st.file_uploader("Upload a candidate MRI DICOM", type=["dcm"])
if uploaded_mri_file is not None:
# Save the uploaded file to a temporary location
with tempfile.NamedTemporaryFile(delete=False, suffix=".dcm") as temp_file:
temp_file.write(uploaded_mri_file.getvalue())
# Apply evaluation transforms to the DICOM image for model prediction
image_tensor = eval_transforms(temp_file.name).unsqueeze(0).to(device)
# Predict
with torch.no_grad():
outputs = mri_model(image_tensor).sigmoid().to("cpu").numpy()
prob = outputs[0][0]
CLOTS_CLASSIFICATION = False
if(prob >= MRI_INFERENCE_THRESHOLD):
CLOTS_CLASSIFICATION=True
st.header("MRI Classification")
st.subheader(f"Ischaemic Stroke : {CLOTS_CLASSIFICATION}")
st.subheader(f"Confidence : {prob * 100:.1f}%")
# Load the original DICOM image for download
download_image_tensor = original_transforms(temp_file.name).unsqueeze(0).to(device)
download_image = download_image_tensor.squeeze()
# Transform the download image and apply windowing
transformed_download_image = DICOM_Utils.transform_image_for_display(download_image)
windowed_download_image = DICOM_Utils.apply_windowing(transformed_download_image, MRI_WINDOW_CENTER, MRI_WINDOW_WIDTH)
# Streamlit button to trigger image download
image_data = image_to_bytes(Image.fromarray(windowed_download_image))
st.download_button(
label="Download MRI Image",
data=image_data,
file_name="downloaded_mri_image.png",
mime="image/png"
)
# Load the original DICOM image for display
display_image_tensor = cam_original_transforms(temp_file.name).unsqueeze(0).to(device)
display_image = display_image_tensor.squeeze()
# Transform the image and apply windowing
transformed_image = DICOM_Utils.transform_image_for_display(display_image)
windowed_image = DICOM_Utils.apply_windowing(transformed_image, MRI_WINDOW_CENTER, MRI_WINDOW_WIDTH)
st.image(Image.fromarray(windowed_image), caption="Original MRI Visualization", use_column_width=True)
# Expand to three channels
windowed_image = np.expand_dims(windowed_image, axis=2)
windowed_image = np.tile(windowed_image, [1, 1, 3])
# Ensure both are of float32 type
windowed_image = windowed_image.astype(np.float32)
# Normalize to [0, 1] range
windowed_image = np.float32(windowed_image) / 255
# Build the CAM (Class Activation Map)
target_layers = [mri_model.model.norm]
cam = GradCAM(model=mri_model, target_layers=target_layers, reshape_transform=reshape_transform, use_cuda=True)
grayscale_cam = cam(input_tensor=image_tensor, targets=[ClassifierOutputTarget(CAM_CLASS_ID)])
grayscale_cam = grayscale_cam[0, :]
# Now you can safely call the show_cam_on_image function
visualization = show_cam_on_image(windowed_image, grayscale_cam, use_rgb=True)
st.image(Image.fromarray(visualization), caption="CAM MRI Visualization", use_column_width=True)
|