MingGatsby
commited on
Commit
•
6d24ac5
1
Parent(s):
46c3233
Upload 2 files
Browse files- app.py +306 -0
- requirement.txt +3 -0
app.py
ADDED
@@ -0,0 +1,306 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Import required libraries
|
2 |
+
import os
|
3 |
+
import io
|
4 |
+
import torch
|
5 |
+
import tempfile
|
6 |
+
import numpy as np
|
7 |
+
import streamlit as st
|
8 |
+
|
9 |
+
# Import utility and custom functions
|
10 |
+
from PIL import Image
|
11 |
+
from Util.DICOM import DICOM_Utils
|
12 |
+
from Util.Custom_Model import Build_Custom_Model, reshape_transform
|
13 |
+
|
14 |
+
# Import additional MONAI and PyTorch Grad-CAM utilities
|
15 |
+
from monai.config import print_config
|
16 |
+
from monai.utils import set_determinism
|
17 |
+
from monai.networks.nets import SEResNet50
|
18 |
+
from monai.transforms import (
|
19 |
+
Activations,
|
20 |
+
EnsureChannelFirst,
|
21 |
+
AsDiscrete,
|
22 |
+
Compose,
|
23 |
+
LoadImage,
|
24 |
+
RandFlip,
|
25 |
+
RandRotate,
|
26 |
+
RandZoom,
|
27 |
+
ScaleIntensity,
|
28 |
+
AsChannelFirst,
|
29 |
+
AddChannel,
|
30 |
+
RandSpatialCrop,
|
31 |
+
ScaleIntensityRangePercentiles,
|
32 |
+
Resize,
|
33 |
+
)
|
34 |
+
from pytorch_grad_cam import GradCAM
|
35 |
+
from pytorch_grad_cam.utils.image import show_cam_on_image
|
36 |
+
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
|
37 |
+
|
38 |
+
|
39 |
+
# (Int) Random seed
|
40 |
+
SEED = 0
|
41 |
+
|
42 |
+
# (Int) Model parameters
|
43 |
+
NUM_CLASSES = 1
|
44 |
+
|
45 |
+
# (String) CT Model directory
|
46 |
+
CT_MODEL_DIRECTORY = "C:\\Src\\GitHub\\AI_UI\\models\\CLOTS\\CT"
|
47 |
+
|
48 |
+
# (String) MRI Model directory
|
49 |
+
MRI_MODEL_DIRECTORY = "C:\\Src\\GitHub\\AI_UI\\models\\CLOTS\\MRI"
|
50 |
+
|
51 |
+
# (Boolean) Use custom model
|
52 |
+
CUSTOM_MODEL_FLAG = True
|
53 |
+
|
54 |
+
# (List[int]) Image size
|
55 |
+
SPATIAL_SIZE = [224, 224]
|
56 |
+
|
57 |
+
# (String) CT Model file name
|
58 |
+
CT_MODEL_FILE_NAME = "best_metric_model.pth"
|
59 |
+
|
60 |
+
# (String) MRI Model file name
|
61 |
+
MRI_MODEL_FILE_NAME = "best_metric_model.pth"
|
62 |
+
|
63 |
+
# (Boolean) List model modules
|
64 |
+
LIST_MODEL_MODULES = False
|
65 |
+
|
66 |
+
# (String) Model name
|
67 |
+
CT_MODEL_NAME = "swin_base_patch4_window7_224"
|
68 |
+
|
69 |
+
# (String) Model name
|
70 |
+
MRI_MODEL_NAME = "swin_base_patch4_window7_224"
|
71 |
+
|
72 |
+
# (Float) Model inference threshold
|
73 |
+
CT_INFERENCE_THRESHOLD = 0.5
|
74 |
+
|
75 |
+
# (Float) Model inference threshold
|
76 |
+
MRI_INFERENCE_THRESHOLD = 0.5
|
77 |
+
|
78 |
+
# (Int) Display CAM Class ID
|
79 |
+
CAM_CLASS_ID = 0
|
80 |
+
|
81 |
+
# (Int) Window Center for image display
|
82 |
+
DEFAULT_CT_WINDOW_CENTER = 40
|
83 |
+
|
84 |
+
# (Int) Window Width for image display
|
85 |
+
DEFAULT_CT_WINDOW_WIDTH = 100
|
86 |
+
|
87 |
+
# (Int) Window Center for image display
|
88 |
+
DEFAULT_MRI_WINDOW_CENTER = 400
|
89 |
+
|
90 |
+
# (Int) Window Width for image display
|
91 |
+
DEFAULT_MRI_WINDOW_WIDTH = 1000
|
92 |
+
|
93 |
+
# (Int) Minimum value for Window Center
|
94 |
+
WINDOW_CENTER_MIN = -600
|
95 |
+
|
96 |
+
# (Int) Maximum value for Window Center
|
97 |
+
WINDOW_CENTER_MAX = 1000
|
98 |
+
|
99 |
+
# (Int) Minimum value for Window Width
|
100 |
+
WINDOW_WIDTH_MIN = 1
|
101 |
+
|
102 |
+
# (Int) Maximum value for Window Width
|
103 |
+
WINDOW_WIDTH_MAX = 3000
|
104 |
+
|
105 |
+
# Evaluation Transforms
|
106 |
+
eval_transforms = Compose(
|
107 |
+
[
|
108 |
+
LoadImage(image_only=True),
|
109 |
+
AsChannelFirst(),
|
110 |
+
ScaleIntensityRangePercentiles(lower=20, upper=80, b_min=0.0, b_max=1.0, clip=False, relative=True),
|
111 |
+
Resize(spatial_size=SPATIAL_SIZE)
|
112 |
+
]
|
113 |
+
)
|
114 |
+
|
115 |
+
# CAM Original Transforms
|
116 |
+
cam_original_transforms = Compose(
|
117 |
+
[
|
118 |
+
LoadImage(image_only=True),
|
119 |
+
AsChannelFirst(),
|
120 |
+
Resize(spatial_size=SPATIAL_SIZE)
|
121 |
+
]
|
122 |
+
)
|
123 |
+
|
124 |
+
# CAM Original Transforms
|
125 |
+
original_transforms = Compose(
|
126 |
+
[
|
127 |
+
LoadImage(image_only=True),
|
128 |
+
AsChannelFirst()
|
129 |
+
]
|
130 |
+
)
|
131 |
+
|
132 |
+
# Function to convert PIL Image to byte stream in PNG format for downloading
|
133 |
+
def image_to_bytes(image):
|
134 |
+
byte_stream = io.BytesIO()
|
135 |
+
image.save(byte_stream, format='PNG')
|
136 |
+
return byte_stream.getvalue()
|
137 |
+
|
138 |
+
set_determinism(seed=SEED)
|
139 |
+
torch.manual_seed(SEED)
|
140 |
+
|
141 |
+
# Parameters
|
142 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
143 |
+
ct_root_dir = tempfile.mkdtemp() if CT_MODEL_DIRECTORY is None else CT_MODEL_DIRECTORY
|
144 |
+
mri_root_dir = tempfile.mkdtemp() if MRI_MODEL_DIRECTORY is None else MRI_MODEL_DIRECTORY
|
145 |
+
|
146 |
+
def load_model(root_dir, model_name, model_file_name):
|
147 |
+
if CUSTOM_MODEL_FLAG:
|
148 |
+
model = Build_Custom_Model(model_name, NUM_CLASSES, pretrained=False).to(device)
|
149 |
+
else:
|
150 |
+
model = SEResNet50(spatial_dims=2, in_channels=1, num_classes=NUM_CLASSES).to(device)
|
151 |
+
model.load_state_dict(torch.load(os.path.join(root_dir, model_file_name)))
|
152 |
+
model.eval()
|
153 |
+
return model
|
154 |
+
|
155 |
+
ct_model = load_model(ct_root_dir, CT_MODEL_NAME, CT_MODEL_FILE_NAME)
|
156 |
+
mri_model = load_model(mri_root_dir, MRI_MODEL_NAME, MRI_MODEL_FILE_NAME)
|
157 |
+
if LIST_MODEL_MODULES:
|
158 |
+
for ct_name, _ in ct_model.named_modules():
|
159 |
+
print(ct_name)
|
160 |
+
|
161 |
+
for mri_name, _ in mri_model.named_modules():
|
162 |
+
print(mri_name)
|
163 |
+
|
164 |
+
# Initialize Streamlit
|
165 |
+
st.title("Analyze")
|
166 |
+
|
167 |
+
# Use Streamlit's number_input to adjust WINDOW_CENTER and WINDOW_WIDTH
|
168 |
+
st.sidebar.header("Windowing Parameters for DICOM")
|
169 |
+
CT_WINDOW_CENTER = st.sidebar.number_input("CT Window Center", min_value=WINDOW_CENTER_MIN, max_value=WINDOW_CENTER_MAX, value=DEFAULT_CT_WINDOW_CENTER, step=1)
|
170 |
+
CT_WINDOW_WIDTH = st.sidebar.number_input("CT Window Width", min_value=WINDOW_WIDTH_MIN, max_value=WINDOW_WIDTH_MAX, value=DEFAULT_CT_WINDOW_WIDTH, step=1)
|
171 |
+
MRI_WINDOW_CENTER = st.sidebar.number_input("MRI Window Center", min_value=WINDOW_CENTER_MIN, max_value=WINDOW_CENTER_MAX, value=DEFAULT_MRI_WINDOW_CENTER, step=1)
|
172 |
+
MRI_WINDOW_WIDTH = st.sidebar.number_input("MRI Window Width", min_value=WINDOW_WIDTH_MIN, max_value=WINDOW_WIDTH_MAX, value=DEFAULT_MRI_WINDOW_WIDTH, step=1)
|
173 |
+
|
174 |
+
uploaded_ct_file = st.file_uploader("Upload a candidate CT DICOM", type=["dcm"])
|
175 |
+
if uploaded_ct_file is not None:
|
176 |
+
# Save the uploaded file to a temporary location
|
177 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".dcm") as temp_file:
|
178 |
+
temp_file.write(uploaded_ct_file.getvalue())
|
179 |
+
|
180 |
+
# Apply evaluation transforms to the DICOM image for model prediction
|
181 |
+
image_tensor = eval_transforms(temp_file.name).unsqueeze(0).to(device)
|
182 |
+
|
183 |
+
# Predict
|
184 |
+
with torch.no_grad():
|
185 |
+
outputs = ct_model(image_tensor).sigmoid().to("cpu").numpy()
|
186 |
+
prob = outputs[0][0]
|
187 |
+
CLOTS_CLASSIFICATION = False
|
188 |
+
if(prob >= CT_INFERENCE_THRESHOLD):
|
189 |
+
CLOTS_CLASSIFICATION=True
|
190 |
+
|
191 |
+
st.header("CT Classification")
|
192 |
+
st.subheader(f"Ischaemic Stroke : {CLOTS_CLASSIFICATION}")
|
193 |
+
st.subheader(f"Confidence : {prob * 100:.1f}%")
|
194 |
+
|
195 |
+
# Load the original DICOM image for download
|
196 |
+
download_image_tensor = original_transforms(temp_file.name).unsqueeze(0).to(device)
|
197 |
+
download_image = download_image_tensor.squeeze()
|
198 |
+
|
199 |
+
# Transform the download image and apply windowing
|
200 |
+
transformed_download_image = DICOM_Utils.transform_image_for_display(download_image)
|
201 |
+
windowed_download_image = DICOM_Utils.apply_windowing(transformed_download_image, CT_WINDOW_CENTER, CT_WINDOW_WIDTH)
|
202 |
+
|
203 |
+
# Streamlit button to trigger image download
|
204 |
+
image_data = image_to_bytes(Image.fromarray(windowed_download_image))
|
205 |
+
st.download_button(
|
206 |
+
label="Download CT Image",
|
207 |
+
data=image_data,
|
208 |
+
file_name="downloaded_ct_image.png",
|
209 |
+
mime="image/png"
|
210 |
+
)
|
211 |
+
|
212 |
+
# Load the original DICOM image for display
|
213 |
+
display_image_tensor = cam_original_transforms(temp_file.name).unsqueeze(0).to(device)
|
214 |
+
display_image = display_image_tensor.squeeze()
|
215 |
+
|
216 |
+
# Transform the image and apply windowing
|
217 |
+
transformed_image = DICOM_Utils.transform_image_for_display(display_image)
|
218 |
+
windowed_image = DICOM_Utils.apply_windowing(transformed_image, CT_WINDOW_CENTER, CT_WINDOW_WIDTH)
|
219 |
+
st.image(Image.fromarray(windowed_image), caption="Original CT Visualization", use_column_width=True)
|
220 |
+
|
221 |
+
# Expand to three channels
|
222 |
+
windowed_image = np.expand_dims(windowed_image, axis=2)
|
223 |
+
windowed_image = np.tile(windowed_image, [1, 1, 3])
|
224 |
+
|
225 |
+
# Ensure both are of float32 type
|
226 |
+
windowed_image = windowed_image.astype(np.float32)
|
227 |
+
|
228 |
+
# Normalize to [0, 1] range
|
229 |
+
windowed_image = np.float32(windowed_image) / 255
|
230 |
+
|
231 |
+
# Build the CAM (Class Activation Map)
|
232 |
+
target_layers = [ct_model.model.norm]
|
233 |
+
cam = GradCAM(model=ct_model, target_layers=target_layers, reshape_transform=reshape_transform, use_cuda=True)
|
234 |
+
grayscale_cam = cam(input_tensor=image_tensor, targets=[ClassifierOutputTarget(CAM_CLASS_ID)])
|
235 |
+
grayscale_cam = grayscale_cam[0, :]
|
236 |
+
|
237 |
+
# Now you can safely call the show_cam_on_image function
|
238 |
+
visualization = show_cam_on_image(windowed_image, grayscale_cam, use_rgb=True)
|
239 |
+
st.image(Image.fromarray(visualization), caption="CAM CT Visualization", use_column_width=True)
|
240 |
+
|
241 |
+
uploaded_mri_file = st.file_uploader("Upload a candidate MRI DICOM", type=["dcm"])
|
242 |
+
if uploaded_mri_file is not None:
|
243 |
+
# Save the uploaded file to a temporary location
|
244 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".dcm") as temp_file:
|
245 |
+
temp_file.write(uploaded_mri_file.getvalue())
|
246 |
+
|
247 |
+
# Apply evaluation transforms to the DICOM image for model prediction
|
248 |
+
image_tensor = eval_transforms(temp_file.name).unsqueeze(0).to(device)
|
249 |
+
|
250 |
+
# Predict
|
251 |
+
with torch.no_grad():
|
252 |
+
outputs = mri_model(image_tensor).sigmoid().to("cpu").numpy()
|
253 |
+
prob = outputs[0][0]
|
254 |
+
CLOTS_CLASSIFICATION = False
|
255 |
+
if(prob >= MRI_INFERENCE_THRESHOLD):
|
256 |
+
CLOTS_CLASSIFICATION=True
|
257 |
+
|
258 |
+
st.header("MRI Classification")
|
259 |
+
st.subheader(f"Ischaemic Stroke : {CLOTS_CLASSIFICATION}")
|
260 |
+
st.subheader(f"Confidence : {prob * 100:.1f}%")
|
261 |
+
|
262 |
+
# Load the original DICOM image for download
|
263 |
+
download_image_tensor = original_transforms(temp_file.name).unsqueeze(0).to(device)
|
264 |
+
download_image = download_image_tensor.squeeze()
|
265 |
+
|
266 |
+
# Transform the download image and apply windowing
|
267 |
+
transformed_download_image = DICOM_Utils.transform_image_for_display(download_image)
|
268 |
+
windowed_download_image = DICOM_Utils.apply_windowing(transformed_download_image, MRI_WINDOW_CENTER, MRI_WINDOW_WIDTH)
|
269 |
+
|
270 |
+
# Streamlit button to trigger image download
|
271 |
+
image_data = image_to_bytes(Image.fromarray(windowed_download_image))
|
272 |
+
st.download_button(
|
273 |
+
label="Download MRI Image",
|
274 |
+
data=image_data,
|
275 |
+
file_name="downloaded_mri_image.png",
|
276 |
+
mime="image/png"
|
277 |
+
)
|
278 |
+
|
279 |
+
# Load the original DICOM image for display
|
280 |
+
display_image_tensor = cam_original_transforms(temp_file.name).unsqueeze(0).to(device)
|
281 |
+
display_image = display_image_tensor.squeeze()
|
282 |
+
|
283 |
+
# Transform the image and apply windowing
|
284 |
+
transformed_image = DICOM_Utils.transform_image_for_display(display_image)
|
285 |
+
windowed_image = DICOM_Utils.apply_windowing(transformed_image, MRI_WINDOW_CENTER, MRI_WINDOW_WIDTH)
|
286 |
+
st.image(Image.fromarray(windowed_image), caption="Original MRI Visualization", use_column_width=True)
|
287 |
+
|
288 |
+
# Expand to three channels
|
289 |
+
windowed_image = np.expand_dims(windowed_image, axis=2)
|
290 |
+
windowed_image = np.tile(windowed_image, [1, 1, 3])
|
291 |
+
|
292 |
+
# Ensure both are of float32 type
|
293 |
+
windowed_image = windowed_image.astype(np.float32)
|
294 |
+
|
295 |
+
# Normalize to [0, 1] range
|
296 |
+
windowed_image = np.float32(windowed_image) / 255
|
297 |
+
|
298 |
+
# Build the CAM (Class Activation Map)
|
299 |
+
target_layers = [mri_model.model.norm]
|
300 |
+
cam = GradCAM(model=mri_model, target_layers=target_layers, reshape_transform=reshape_transform, use_cuda=True)
|
301 |
+
grayscale_cam = cam(input_tensor=image_tensor, targets=[ClassifierOutputTarget(CAM_CLASS_ID)])
|
302 |
+
grayscale_cam = grayscale_cam[0, :]
|
303 |
+
|
304 |
+
# Now you can safely call the show_cam_on_image function
|
305 |
+
visualization = show_cam_on_image(windowed_image, grayscale_cam, use_rgb=True)
|
306 |
+
st.image(Image.fromarray(visualization), caption="CAM MRI Visualization", use_column_width=True)
|
requirement.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
gradio
|
3 |
+
monai
|