Spaces:
Runtime error
Runtime error
Update app_utils.py
Browse files- app_utils.py +3 -154
app_utils.py
CHANGED
@@ -87,6 +87,9 @@ def preprocess_video_and_predict(video):
|
|
87 |
|
88 |
|
89 |
#to return scores
|
|
|
|
|
|
|
90 |
def video_score(video):
|
91 |
|
92 |
cap = cv2.VideoCapture(video)
|
@@ -244,160 +247,6 @@ def video_score(video):
|
|
244 |
my_audio_clip.write_audiofile("data/audio.wav",ffmpeg_params=["-ac","1"])
|
245 |
|
246 |
return stat,scores_str,"data/audio.wav"
|
247 |
-
|
248 |
-
###########################################################################################################################
|
249 |
-
# def video_score(video):
|
250 |
-
# cap = cv2.VideoCapture(video)
|
251 |
-
# w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
252 |
-
# h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
253 |
-
# fps = np.round(cap.get(cv2.CAP_PROP_FPS))
|
254 |
-
|
255 |
-
# path_save_video_face = 'result_face.mp4'
|
256 |
-
# vid_writer_face = cv2.VideoWriter(path_save_video_face, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))
|
257 |
-
|
258 |
-
# # path_save_video_hm = 'result_hm.mp4'
|
259 |
-
# # vid_writer_hm = cv2.VideoWriter(path_save_video_hm, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))
|
260 |
-
|
261 |
-
# lstm_features = []
|
262 |
-
# count_frame = 1
|
263 |
-
# count_face = 0
|
264 |
-
# probs = []
|
265 |
-
# frames = []
|
266 |
-
# last_output = None
|
267 |
-
# last_heatmap = None
|
268 |
-
# cur_face = None
|
269 |
-
|
270 |
-
# with mp_face_mesh.FaceMesh(
|
271 |
-
# max_num_faces=1,
|
272 |
-
# refine_landmarks=False,
|
273 |
-
# min_detection_confidence=0.5,
|
274 |
-
# min_tracking_confidence=0.5) as face_mesh:
|
275 |
-
|
276 |
-
# while cap.isOpened():
|
277 |
-
# _, frame = cap.read()
|
278 |
-
# if frame is None: break
|
279 |
-
|
280 |
-
# frame_copy = frame.copy()
|
281 |
-
# frame_copy.flags.writeable = False
|
282 |
-
# frame_copy = cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
|
283 |
-
# results = face_mesh.process(frame_copy)
|
284 |
-
# frame_copy.flags.writeable = True
|
285 |
-
|
286 |
-
# if results.multi_face_landmarks:
|
287 |
-
# for fl in results.multi_face_landmarks:
|
288 |
-
# startX, startY, endX, endY = get_box(fl, w, h)
|
289 |
-
# cur_face = frame_copy[startY:endY, startX: endX]
|
290 |
-
|
291 |
-
# if count_face%config_data.FRAME_DOWNSAMPLING == 0:
|
292 |
-
# cur_face_copy = pth_processing(Image.fromarray(cur_face))
|
293 |
-
# with torch.no_grad():
|
294 |
-
# features = torch.nn.functional.relu(pth_model_static.extract_features(cur_face_copy)).detach().numpy()
|
295 |
-
|
296 |
-
# # grayscale_cam = cam(input_tensor=cur_face_copy)
|
297 |
-
# # grayscale_cam = grayscale_cam[0, :]
|
298 |
-
# # cur_face_hm = cv2.resize(cur_face,(224,224), interpolation = cv2.INTER_AREA)
|
299 |
-
# # cur_face_hm = np.float32(cur_face_hm) / 255
|
300 |
-
# # heatmap = show_cam_on_image(cur_face_hm, grayscale_cam, use_rgb=False)
|
301 |
-
# # last_heatmap = heatmap
|
302 |
-
|
303 |
-
# if len(lstm_features) == 0:
|
304 |
-
# lstm_features = [features]*10
|
305 |
-
# else:
|
306 |
-
# lstm_features = lstm_features[1:] + [features]
|
307 |
-
|
308 |
-
# lstm_f = torch.from_numpy(np.vstack(lstm_features))
|
309 |
-
# lstm_f = torch.unsqueeze(lstm_f, 0)
|
310 |
-
# with torch.no_grad():
|
311 |
-
# output = pth_model_dynamic(lstm_f).detach().numpy()
|
312 |
-
# last_output = output
|
313 |
-
|
314 |
-
# if count_face == 0:
|
315 |
-
# count_face += 1
|
316 |
-
|
317 |
-
# else:
|
318 |
-
# if last_output is not None:
|
319 |
-
# output = last_output
|
320 |
-
# # heatmap = last_heatmap
|
321 |
-
|
322 |
-
# elif last_output is None:
|
323 |
-
# output = np.empty((1, 7))
|
324 |
-
# output[:] = np.nan
|
325 |
-
|
326 |
-
# probs.append(output[0])
|
327 |
-
# frames.append(count_frame)
|
328 |
-
# else:
|
329 |
-
# if last_output is not None:
|
330 |
-
# lstm_features = []
|
331 |
-
# empty = np.empty((7))
|
332 |
-
# empty[:] = np.nan
|
333 |
-
# probs.append(empty)
|
334 |
-
# frames.append(count_frame)
|
335 |
-
|
336 |
-
# if cur_face is not None:
|
337 |
-
# # heatmap_f = display_info(heatmap, 'Frame: {}'.format(count_frame), box_scale=.3)
|
338 |
-
|
339 |
-
# cur_face = cv2.cvtColor(cur_face, cv2.COLOR_RGB2BGR)
|
340 |
-
# cur_face = cv2.resize(cur_face, (224,224), interpolation = cv2.INTER_AREA)
|
341 |
-
# cur_face = display_info(cur_face, 'Frame: {}'.format(count_frame), box_scale=.3)
|
342 |
-
# vid_writer_face.write(cur_face)
|
343 |
-
# # vid_writer_hm.write(heatmap_f)
|
344 |
-
|
345 |
-
# count_frame += 1
|
346 |
-
# if count_face != 0:
|
347 |
-
# count_face += 1
|
348 |
-
|
349 |
-
# vid_writer_face.release()
|
350 |
-
# # vid_writer_hm.release()
|
351 |
-
|
352 |
-
# stat = statistics_plot(frames, probs)
|
353 |
-
|
354 |
-
# if not stat:
|
355 |
-
# return None, None
|
356 |
-
|
357 |
-
# #for debug
|
358 |
-
# print(type(frames))
|
359 |
-
# print(frames)
|
360 |
-
# print(type(probs))
|
361 |
-
# print(probs)
|
362 |
-
# # to calculate scores
|
363 |
-
# nan=float('nan')
|
364 |
-
# s1 = 0
|
365 |
-
# s2 = 0
|
366 |
-
# s3 = 0
|
367 |
-
# s4 = 0
|
368 |
-
# s5 = 0
|
369 |
-
# s6 = 0
|
370 |
-
# s7 = 0
|
371 |
-
# frames_len=len(frames)
|
372 |
-
# for i in range(frames_len):
|
373 |
-
# if np.isnan(probs[i][0]):
|
374 |
-
# frames_len=frames_len-1
|
375 |
-
# else:
|
376 |
-
# s1=s1+probs[i][0]
|
377 |
-
# s2=s2+probs[i][1]
|
378 |
-
# s3=s3+probs[i][2]
|
379 |
-
# s4=s4+probs[i][3]
|
380 |
-
# s5=s5+probs[i][4]
|
381 |
-
# s6=s6+probs[i][5]
|
382 |
-
# s7=s7+probs[i][6]
|
383 |
-
# s1=s1/frames_len
|
384 |
-
# s2=s2/frames_len
|
385 |
-
# s3=s3/frames_len
|
386 |
-
# s4=s4/frames_len
|
387 |
-
# s5=s5/frames_len
|
388 |
-
# s6=s6/frames_len
|
389 |
-
# s7=s7/frames_len
|
390 |
-
# prob=[s1,s2,s3,s4,s5,s6,s7]
|
391 |
-
# prob_str=str(prob)
|
392 |
-
# with open("local_data/data.txt",'a', encoding="utf8") as f:
|
393 |
-
# f.write(prob_str+'\n')
|
394 |
-
|
395 |
-
# with open("local_data/data.txt",'r', encoding="utf8") as f:
|
396 |
-
# for i in f:
|
397 |
-
# print(i)
|
398 |
-
# #平衡点值为零,越正越负面
|
399 |
-
# score1=0*prob[0]-8*prob[1]+4*prob[2]+0*prob[3]+2*prob[4]+2*prob[5]+4*prob[6]
|
400 |
-
# print("score1=",score1)
|
401 |
|
402 |
# #trans the audio file
|
403 |
# my_audio_clip = AudioFileClip(video)
|
|
|
87 |
|
88 |
|
89 |
#to return scores
|
90 |
+
|
91 |
+
|
92 |
+
###########################################################################################################################
|
93 |
def video_score(video):
|
94 |
|
95 |
cap = cv2.VideoCapture(video)
|
|
|
247 |
my_audio_clip.write_audiofile("data/audio.wav",ffmpeg_params=["-ac","1"])
|
248 |
|
249 |
return stat,scores_str,"data/audio.wav"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
250 |
|
251 |
# #trans the audio file
|
252 |
# my_audio_clip = AudioFileClip(video)
|