Liusuthu's picture
Upload folder using huggingface_hub
890de26 verified
raw
history blame
16.2 kB
# -*- coding:utf-8 -*-
# @FileName :preprocess.py
# @Time :2023/8/8 20:30
# @Author :lovemefan
# @Email :[email protected]
import copy
from typing import List, Tuple
import kaldi_native_fbank as knf
import numpy as np
class WavFrontend:
"""Conventional frontend structure for ASR."""
def __init__(
self,
cmvn_file: str = None,
fs: int = 16000,
window: str = "hamming",
n_mels: int = 80,
frame_length: int = 25,
frame_shift: int = 10,
lfr_m: int = 1,
lfr_n: int = 1,
dither: float = 1.0,
**kwargs,
) -> None:
opts = knf.FbankOptions()
opts.frame_opts.samp_freq = fs
opts.frame_opts.dither = dither
opts.frame_opts.window_type = window
opts.frame_opts.frame_shift_ms = float(frame_shift)
opts.frame_opts.frame_length_ms = float(frame_length)
opts.mel_opts.num_bins = n_mels
opts.energy_floor = 0
opts.frame_opts.snip_edges = True
opts.mel_opts.debug_mel = False
self.opts = opts
self.lfr_m = lfr_m
self.lfr_n = lfr_n
self.cmvn_file = cmvn_file
if self.cmvn_file:
self.cmvn = self.load_cmvn()
self.fbank_fn = None
self.fbank_beg_idx = 0
self.reset_status()
def fbank(self, waveform: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
waveform = waveform * (1 << 15)
self.fbank_fn = knf.OnlineFbank(self.opts)
self.fbank_fn.accept_waveform(self.opts.frame_opts.samp_freq, waveform.tolist())
frames = self.fbank_fn.num_frames_ready
mat = np.empty([frames, self.opts.mel_opts.num_bins])
for i in range(frames):
mat[i, :] = self.fbank_fn.get_frame(i)
feat = mat.astype(np.float32)
feat_len = np.array(mat.shape[0]).astype(np.int32)
return feat, feat_len
def fbank_online(self, waveform: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
waveform = waveform * (1 << 15)
# self.fbank_fn = knf.OnlineFbank(self.opts)
self.fbank_fn.accept_waveform(self.opts.frame_opts.samp_freq, waveform.tolist())
frames = self.fbank_fn.num_frames_ready
mat = np.empty([frames, self.opts.mel_opts.num_bins])
for i in range(self.fbank_beg_idx, frames):
mat[i, :] = self.fbank_fn.get_frame(i)
# self.fbank_beg_idx += (frames-self.fbank_beg_idx)
feat = mat.astype(np.float32)
feat_len = np.array(mat.shape[0]).astype(np.int32)
return feat, feat_len
def reset_status(self):
self.fbank_fn = knf.OnlineFbank(self.opts)
self.fbank_beg_idx = 0
def lfr_cmvn(self, feat: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
if self.lfr_m != 1 or self.lfr_n != 1:
feat = self.apply_lfr(feat, self.lfr_m, self.lfr_n)
if self.cmvn_file:
feat = self.apply_cmvn(feat)
feat_len = np.array(feat.shape[0]).astype(np.int32)
return feat, feat_len
@staticmethod
def apply_lfr(inputs: np.ndarray, lfr_m: int, lfr_n: int) -> np.ndarray:
LFR_inputs = []
T = inputs.shape[0]
T_lfr = int(np.ceil(T / lfr_n))
left_padding = np.tile(inputs[0], ((lfr_m - 1) // 2, 1))
inputs = np.vstack((left_padding, inputs))
T = T + (lfr_m - 1) // 2
for i in range(T_lfr):
if lfr_m <= T - i * lfr_n:
LFR_inputs.append(
(inputs[i * lfr_n : i * lfr_n + lfr_m]).reshape(1, -1)
)
else:
# process last LFR frame
num_padding = lfr_m - (T - i * lfr_n)
frame = inputs[i * lfr_n :].reshape(-1)
for _ in range(num_padding):
frame = np.hstack((frame, inputs[-1]))
LFR_inputs.append(frame)
LFR_outputs = np.vstack(LFR_inputs).astype(np.float32)
return LFR_outputs
def apply_cmvn(self, inputs: np.ndarray) -> np.ndarray:
"""
Apply CMVN with mvn data
"""
frame, dim = inputs.shape
means = np.tile(self.cmvn[0:1, :dim], (frame, 1))
vars = np.tile(self.cmvn[1:2, :dim], (frame, 1))
inputs = (inputs + means) * vars
return inputs
def load_cmvn(
self,
) -> np.ndarray:
with open(self.cmvn_file, "r", encoding="utf-8") as f:
lines = f.readlines()
means_list = []
vars_list = []
for i in range(len(lines)):
line_item = lines[i].split()
if line_item[0] == "<AddShift>":
line_item = lines[i + 1].split()
if line_item[0] == "<LearnRateCoef>":
add_shift_line = line_item[3 : (len(line_item) - 1)]
means_list = list(add_shift_line)
continue
elif line_item[0] == "<Rescale>":
line_item = lines[i + 1].split()
if line_item[0] == "<LearnRateCoef>":
rescale_line = line_item[3 : (len(line_item) - 1)]
vars_list = list(rescale_line)
continue
means = np.array(means_list).astype(np.float64)
vars = np.array(vars_list).astype(np.float64)
cmvn = np.array([means, vars])
return cmvn
class WavFrontendOnline(WavFrontend):
def __init__(self, **kwargs):
super().__init__(**kwargs)
# self.fbank_fn = knf.OnlineFbank(self.opts)
# add variables
self.frame_sample_length = int(
self.opts.frame_opts.frame_length_ms * self.opts.frame_opts.samp_freq / 1000
)
self.frame_shift_sample_length = int(
self.opts.frame_opts.frame_shift_ms * self.opts.frame_opts.samp_freq / 1000
)
self.waveform = None
self.reserve_waveforms = None
self.input_cache = None
self.lfr_splice_cache = []
@staticmethod
# inputs has catted the cache
def apply_lfr(
inputs: np.ndarray, lfr_m: int, lfr_n: int, is_final: bool = False
) -> Tuple[np.ndarray, np.ndarray, int]:
"""
Apply lfr with data
"""
LFR_inputs = []
T = inputs.shape[0] # include the right context
T_lfr = int(
np.ceil((T - (lfr_m - 1) // 2) / lfr_n)
) # minus the right context: (lfr_m - 1) // 2
splice_idx = T_lfr
for i in range(T_lfr):
if lfr_m <= T - i * lfr_n:
LFR_inputs.append(
(inputs[i * lfr_n : i * lfr_n + lfr_m]).reshape(1, -1)
)
else: # process last LFR frame
if is_final:
num_padding = lfr_m - (T - i * lfr_n)
frame = (inputs[i * lfr_n :]).reshape(-1)
for _ in range(num_padding):
frame = np.hstack((frame, inputs[-1]))
LFR_inputs.append(frame)
else:
# update splice_idx and break the circle
splice_idx = i
break
splice_idx = min(T - 1, splice_idx * lfr_n)
lfr_splice_cache = inputs[splice_idx:, :]
LFR_outputs = np.vstack(LFR_inputs)
return LFR_outputs.astype(np.float32), lfr_splice_cache, splice_idx
@staticmethod
def compute_frame_num(
sample_length: int, frame_sample_length: int, frame_shift_sample_length: int
) -> int:
frame_num = int(
(sample_length - frame_sample_length) / frame_shift_sample_length + 1
)
return (
frame_num if frame_num >= 1 and sample_length >= frame_sample_length else 0
)
def fbank(
self, input: np.ndarray, input_lengths: np.ndarray
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
self.fbank_fn = knf.OnlineFbank(self.opts)
batch_size = input.shape[0]
if self.input_cache is None:
self.input_cache = np.empty((batch_size, 0), dtype=np.float32)
input = np.concatenate((self.input_cache, input), axis=1)
frame_num = self.compute_frame_num(
input.shape[-1], self.frame_sample_length, self.frame_shift_sample_length
)
# update self.in_cache
self.input_cache = input[
:, -(input.shape[-1] - frame_num * self.frame_shift_sample_length) :
]
waveforms = np.empty(0, dtype=np.float32)
feats_pad = np.empty(0, dtype=np.float32)
feats_lens = np.empty(0, dtype=np.int32)
if frame_num:
waveforms = []
feats = []
feats_lens = []
for i in range(batch_size):
waveform = input[i]
waveforms.append(
waveform[
: (
(frame_num - 1) * self.frame_shift_sample_length
+ self.frame_sample_length
)
]
)
waveform = waveform * (1 << 15)
self.fbank_fn.accept_waveform(
self.opts.frame_opts.samp_freq, waveform.tolist()
)
frames = self.fbank_fn.num_frames_ready
mat = np.empty([frames, self.opts.mel_opts.num_bins])
for i in range(frames):
mat[i, :] = self.fbank_fn.get_frame(i)
feat = mat.astype(np.float32)
feat_len = np.array(mat.shape[0]).astype(np.int32)
feats.append(feat)
feats_lens.append(feat_len)
waveforms = np.stack(waveforms)
feats_lens = np.array(feats_lens)
feats_pad = np.array(feats)
self.fbanks = feats_pad
self.fbanks_lens = copy.deepcopy(feats_lens)
return waveforms, feats_pad, feats_lens
def get_fbank(self) -> Tuple[np.ndarray, np.ndarray]:
return self.fbanks, self.fbanks_lens
def lfr_cmvn(
self, input: np.ndarray, input_lengths: np.ndarray, is_final: bool = False
) -> Tuple[np.ndarray, np.ndarray, List[int]]:
batch_size = input.shape[0]
feats = []
feats_lens = []
lfr_splice_frame_idxs = []
for i in range(batch_size):
mat = input[i, : input_lengths[i], :]
lfr_splice_frame_idx = -1
if self.lfr_m != 1 or self.lfr_n != 1:
# update self.lfr_splice_cache in self.apply_lfr
mat, self.lfr_splice_cache[i], lfr_splice_frame_idx = self.apply_lfr(
mat, self.lfr_m, self.lfr_n, is_final
)
if self.cmvn_file is not None:
mat = self.apply_cmvn(mat)
feat_length = mat.shape[0]
feats.append(mat)
feats_lens.append(feat_length)
lfr_splice_frame_idxs.append(lfr_splice_frame_idx)
feats_lens = np.array(feats_lens)
feats_pad = np.array(feats)
return feats_pad, feats_lens, lfr_splice_frame_idxs
def extract_fbank(
self, input: np.ndarray, input_lengths: np.ndarray, is_final: bool = False
) -> Tuple[np.ndarray, np.ndarray]:
batch_size = input.shape[0]
assert (
batch_size == 1
), "we support to extract feature online only when the batch size is equal to 1 now"
waveforms, feats, feats_lengths = self.fbank(
input, input_lengths
) # input shape: B T D
if feats.shape[0]:
self.waveforms = (
waveforms
if self.reserve_waveforms is None
else np.concatenate((self.reserve_waveforms, waveforms), axis=1)
)
if not self.lfr_splice_cache:
for i in range(batch_size):
self.lfr_splice_cache.append(
np.expand_dims(feats[i][0, :], axis=0).repeat(
(self.lfr_m - 1) // 2, axis=0
)
)
if feats_lengths[0] + self.lfr_splice_cache[0].shape[0] >= self.lfr_m:
lfr_splice_cache_np = np.stack(self.lfr_splice_cache) # B T D
feats = np.concatenate((lfr_splice_cache_np, feats), axis=1)
feats_lengths += lfr_splice_cache_np[0].shape[0]
frame_from_waveforms = int(
(self.waveforms.shape[1] - self.frame_sample_length)
/ self.frame_shift_sample_length
+ 1
)
minus_frame = (
(self.lfr_m - 1) // 2 if self.reserve_waveforms is None else 0
)
feats, feats_lengths, lfr_splice_frame_idxs = self.lfr_cmvn(
feats, feats_lengths, is_final
)
if self.lfr_m == 1:
self.reserve_waveforms = None
else:
reserve_frame_idx = lfr_splice_frame_idxs[0] - minus_frame
# print('reserve_frame_idx: ' + str(reserve_frame_idx))
# print('frame_frame: ' + str(frame_from_waveforms))
self.reserve_waveforms = self.waveforms[
:,
reserve_frame_idx
* self.frame_shift_sample_length : frame_from_waveforms
* self.frame_shift_sample_length,
]
sample_length = (
frame_from_waveforms - 1
) * self.frame_shift_sample_length + self.frame_sample_length
self.waveforms = self.waveforms[:, :sample_length]
else:
# update self.reserve_waveforms and self.lfr_splice_cache
self.reserve_waveforms = self.waveforms[
:, : -(self.frame_sample_length - self.frame_shift_sample_length)
]
for i in range(batch_size):
self.lfr_splice_cache[i] = np.concatenate(
(self.lfr_splice_cache[i], feats[i]), axis=0
)
return np.empty(0, dtype=np.float32), feats_lengths
else:
if is_final:
self.waveforms = (
waveforms
if self.reserve_waveforms is None
else self.reserve_waveforms
)
feats = np.stack(self.lfr_splice_cache)
feats_lengths = np.zeros(batch_size, dtype=np.int32) + feats.shape[1]
feats, feats_lengths, _ = self.lfr_cmvn(feats, feats_lengths, is_final)
if is_final:
self.cache_reset()
return feats, feats_lengths
def get_waveforms(self):
return self.waveforms
def cache_reset(self):
self.fbank_fn = knf.OnlineFbank(self.opts)
self.reserve_waveforms = None
self.input_cache = None
self.lfr_splice_cache = []
class SinusoidalPositionEncoderOnline:
"""Streaming Positional encoding."""
def encode(
self,
positions: np.ndarray = None,
depth: int = None,
dtype: np.dtype = np.float32,
):
batch_size = positions.shape[0]
positions = positions.astype(dtype)
log_timescale_increment = np.log(np.array([10000], dtype=dtype)) / (
depth / 2 - 1
)
inv_timescales = np.exp(
np.arange(depth / 2).astype(dtype) * (-log_timescale_increment)
)
inv_timescales = np.reshape(inv_timescales, [batch_size, -1])
scaled_time = np.reshape(positions, [1, -1, 1]) * np.reshape(
inv_timescales, [1, 1, -1]
)
encoding = np.concatenate((np.sin(scaled_time), np.cos(scaled_time)), axis=2)
return encoding.astype(dtype)
def forward(self, x, start_idx=0):
batch_size, timesteps, input_dim = x.shape
positions = np.arange(1, timesteps + 1 + start_idx)[None, :]
position_encoding = self.encode(positions, input_dim, x.dtype)
return x + position_encoding[:, start_idx : start_idx + timesteps]