Spaces:
Runtime error
Runtime error
Portable-Depression-Detecting-System
/
pretrained_models
/local-speechbrain
/emotion-recognition-wav2vec2-IEMOCAP
/custom_interface.py
import torch | |
from speechbrain.pretrained import Pretrained | |
class CustomEncoderWav2vec2Classifier(Pretrained): | |
"""A ready-to-use class for utterance-level classification (e.g, speaker-id, | |
language-id, emotion recognition, keyword spotting, etc). | |
The class assumes that an self-supervised encoder like wav2vec2/hubert and a classifier model | |
are defined in the yaml file. If you want to | |
convert the predicted index into a corresponding text label, please | |
provide the path of the label_encoder in a variable called 'lab_encoder_file' | |
within the yaml. | |
The class can be used either to run only the encoder (encode_batch()) to | |
extract embeddings or to run a classification step (classify_batch()). | |
``` | |
Example | |
------- | |
>>> import torchaudio | |
>>> from speechbrain.pretrained import EncoderClassifier | |
>>> # Model is downloaded from the speechbrain HuggingFace repo | |
>>> tmpdir = getfixture("tmpdir") | |
>>> classifier = EncoderClassifier.from_hparams( | |
... source="speechbrain/spkrec-ecapa-voxceleb", | |
... savedir=tmpdir, | |
... ) | |
>>> # Compute embeddings | |
>>> signal, fs = torchaudio.load("samples/audio_samples/example1.wav") | |
>>> embeddings = classifier.encode_batch(signal) | |
>>> # Classification | |
>>> prediction = classifier .classify_batch(signal) | |
""" | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
def encode_batch(self, wavs, wav_lens=None, normalize=False): | |
"""Encodes the input audio into a single vector embeddin g. | |
The waveforms should already be in the model's desired format. | |
You can call: | |
``normalized = <this>.normalizer(signal, sample_rate)`` | |
to get a correctly converted signal in most cases. | |
Arguments | |
--------- | |
wavs : torch.tensor | |
Batch of waveforms [batch, time, channels] or [batch, time] | |
depending on the model. Make sure the sample rate is fs=16000 Hz. | |
wav_lens : torch.tensor | |
Lengths of the waveforms relative to the longest one in the | |
batch, tensor of shape [batch]. The longest one should have | |
relative length 1.0 and others len(waveform) / max_length. | |
Used for ignoring padding. | |
normalize : bool | |
If True, it normalizes the embeddings with the statistics | |
contained in mean_var_norm_emb. | |
Returns | |
------- | |
torch.tensor | |
The encoded batch | |
""" | |
# Manage single waveforms in input | |
if len(wavs.shape) == 1: | |
wavs = wavs.unsqueeze(0) | |
# Assign full length if wav_lens is not assigned | |
if wav_lens is None: | |
wav_lens = torch.ones(wavs.shape[0], device=self.device) | |
# Storing waveform in the specified device | |
wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device) | |
wavs = wavs.float() | |
# Computing features and embeddings | |
outputs = self.mods.wav2vec2(wavs) | |
# last dim will be used for AdaptativeAVG pool | |
outputs = self.mods.avg_pool(outputs, wav_lens) | |
# # print(outputs.shape) | |
outputs = outputs.view(outputs.shape[0], -1) | |
# print(outputs.shape) | |
return outputs | |
def classify_batch(self, wavs, wav_lens=None): | |
"""Performs classification on the top of the encoded features. | |
It returns the posterior probabilities, the index and, if the label | |
encoder is specified it also the text label. | |
Arguments | |
--------- | |
wavs : torch.tensor | |
Batch of waveforms [batch, time, channels] or [batch, time] | |
depending on the model. Make sure the sample rate is fs=16000 Hz. | |
wav_lens : torch.tensor | |
Lengths of the waveforms relative to the longest one in the | |
batch, tensor of shape [batch]. The longest one should have | |
relative length 1.0 and others len(waveform) / max_length. | |
Used for ignoring padding. | |
Returns | |
------- | |
out_prob | |
The log posterior probabilities of each class ([batch, N_class]) | |
score: | |
It is the value of the log-posterior for the best class ([batch,]) | |
index | |
The indexes of the best class ([batch,]) | |
text_lab: | |
List with the text labels corresponding to the indexes. | |
(label encoder should be provided). | |
""" | |
outputs = self.encode_batch(wavs, wav_lens) | |
#outputs = self.CH(wavs, wav_lens) | |
outputs = self.mods.output_mlp(outputs) | |
out_prob = self.hparams.softmax(outputs) | |
score, index = torch.max(out_prob, dim=-1) | |
text_lab = self.hparams.label_encoder.decode_torch(index) | |
return out_prob, score, index, text_lab | |
def CH(self, wavs, wav_lens=None): | |
import torch | |
import torch.nn.functional as F | |
import soundfile as sf | |
from fairseq import checkpoint_utils | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model_path = "D:\pycharm2020\code\yuyin_ChineseWav2vec\pretrained_models\Chinses_hubert\\chinese-hubert-large-fairseq-ckpt.pt" | |
wav_path = wavs | |
def postprocess(feats, normalize=False): | |
if feats.dim() == 2: | |
feats = feats.mean(-1) | |
assert feats.dim() == 1, feats.dim() | |
if normalize: | |
with torch.no_grad(): | |
feats = F.layer_norm(feats, feats.shape) | |
return feats | |
print("loading model(s) from {}".format(model_path)) | |
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task( | |
[model_path], | |
suffix="", | |
) | |
print("loaded model(s) from {}".format(model_path)) | |
print(f"normalize: {saved_cfg.task.normalize}") | |
model = models[0] | |
model = model.to(device) | |
model = model.half() | |
model.eval() | |
# wav, sr = sf.read(wav_path) | |
# feat = torch.from_numpy(wav_path).float() | |
feat = postprocess(wav_path, normalize=saved_cfg.task.normalize) | |
feats = feat.view(1, -1) | |
padding_mask = ( | |
torch.BoolTensor(feats.shape).fill_(False) | |
) | |
inputs = { | |
"source": feats.half().to(device), | |
"padding_mask": padding_mask.to(device), | |
} | |
with torch.no_grad(): | |
logits = model.extract_features(**inputs) | |
outputs = self.mods.avg_pool(logits[0], wav_lens) | |
# # print(outputs.shape) | |
outputs = outputs.view(outputs.shape[0], -1) | |
# print(outputs.shape) | |
return outputs | |
def classify_file(self, path): | |
"""Classifies the given audiofile into the given set of labels. | |
Arguments | |
--------- | |
path : str | |
Path to audio file to classify. | |
Returns | |
------- | |
out_prob | |
The log posterior probabilities of each class ([batch, N_class]) | |
score: | |
It is the value of the log-posterior for the best class ([batch,]) | |
index | |
The indexes of the best class ([batch,]) | |
text_lab: | |
List with the text labels corresponding to the indexes. | |
(label encoder should be provided). | |
""" | |
waveform = self.load_audio(path) | |
# Fake a batch: | |
batch = waveform.unsqueeze(0) | |
rel_length = torch.tensor([1.0]) | |
outputs = self.encode_batch(batch, rel_length) | |
outputs = self.mods.output_mlp(outputs).squeeze(1) | |
out_prob = self.hparams.softmax(outputs) | |
score, index = torch.max(out_prob, dim=-1) | |
text_lab = self.hparams.label_encoder.decode_torch(index) | |
return out_prob, score, index, text_lab | |
def forward(self, wavs, wav_lens=None, normalize=False): | |
return self.encode_batch( | |
wavs=wavs, wav_lens=wav_lens, normalize=normalize | |
) | |