Spaces:
Runtime error
Runtime error
Portable-Depression-Detecting-System
/
paraformer
/runtime
/python
/utils
/vadOrtInferRuntimeSession.py
# -*- coding:utf-8 -*- | |
# @FileName :vadOrtInferSession.py | |
# @Time :2023/8/9 09:25 | |
# @Author :lovemefan | |
# @Email :[email protected] | |
# -*- coding:utf-8 -*- | |
# @FileName :VadOrtInferSession.py | |
# @Time :2023/4/3 18:09 | |
# @Author :lovemefan | |
# @Email :[email protected] | |
import logging | |
from pathlib import Path | |
from typing import List, Union | |
import numpy as np | |
from onnxruntime import (GraphOptimizationLevel, InferenceSession, | |
SessionOptions, get_available_providers, get_device) | |
from paraformer.runtime.python.utils.singleton import singleton | |
class VadOrtInferRuntimeSession: | |
def __init__(self, config, root_dir: Path): | |
sess_opt = SessionOptions() | |
sess_opt.log_severity_level = 4 | |
sess_opt.enable_cpu_mem_arena = False | |
sess_opt.graph_optimization_level = GraphOptimizationLevel.ORT_ENABLE_ALL | |
cuda_ep = "CUDAExecutionProvider" | |
cpu_ep = "CPUExecutionProvider" | |
cpu_provider_options = { | |
"arena_extend_strategy": "kSameAsRequested", | |
} | |
EP_list = [] | |
if ( | |
config["use_cuda"] | |
and get_device() == "GPU" | |
and cuda_ep in get_available_providers() | |
): | |
EP_list = [(cuda_ep, config[cuda_ep])] | |
EP_list.append((cpu_ep, cpu_provider_options)) | |
config["model_path"] = root_dir / str(config["model_path"]) | |
self._verify_model(config["model_path"]) | |
logging.info(f"Loading onnx model at {str(config['model_path'])}") | |
self.session = InferenceSession( | |
str(config["model_path"]), sess_options=sess_opt, providers=EP_list | |
) | |
if config["use_cuda"] and cuda_ep not in self.session.get_providers(): | |
logging.warning( | |
f"{cuda_ep} is not available for current env, " | |
f"the inference part is automatically shifted to be " | |
f"executed under {cpu_ep}.\n " | |
"Please ensure the installed onnxruntime-gpu version" | |
" matches your cuda and cudnn version, " | |
"you can check their relations from the offical web site: " | |
"https://onnxruntime.ai/docs/execution-providers/CUDA-ExecutionProvider.html", | |
RuntimeWarning, | |
) | |
def __call__( | |
self, input_content: List[Union[np.ndarray, np.ndarray]] | |
) -> np.ndarray: | |
if isinstance(input_content, list): | |
input_dict = { | |
"speech": input_content[0], | |
"in_cache0": input_content[1], | |
"in_cache1": input_content[2], | |
"in_cache2": input_content[3], | |
"in_cache3": input_content[4], | |
} | |
else: | |
input_dict = {"speech": input_content} | |
return self.session.run(None, input_dict) | |
def get_input_names( | |
self, | |
): | |
return [v.name for v in self.session.get_inputs()] | |
def get_output_names( | |
self, | |
): | |
return [v.name for v in self.session.get_outputs()] | |
def get_character_list(self, key: str = "character"): | |
return self.meta_dict[key].splitlines() | |
def have_key(self, key: str = "character") -> bool: | |
self.meta_dict = self.session.get_modelmeta().custom_metadata_map | |
if key in self.meta_dict.keys(): | |
return True | |
return False | |
def _verify_model(model_path): | |
model_path = Path(model_path) | |
if not model_path.exists(): | |
raise FileNotFoundError(f"{model_path} does not exists.") | |
if not model_path.is_file(): | |
raise FileExistsError(f"{model_path} is not a file.") | |