File size: 5,259 Bytes
890de26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d21960
890de26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e7226b
5cbdda6
e32152a
5cbdda6
 
 
890de26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e7226b
890de26
 
5cbdda6
 
 
 
 
e32152a
 
98d5ff7
e32152a
 
890de26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import os

import gradio as gr
import numpy as np
import soundfile as sf
import torchaudio
from speechbrain.pretrained.interfaces import foreign_class

from app_utils import preprocess_video_and_rank
from authors import AUTHORS

# Importing necessary components for the Gradio app
from description import DESCRIPTION_DYNAMIC  # , DESCRIPTION_STATIC

# import scipy.io.wavfile as wav
from paraformer import AudioReader, CttPunctuator, FSMNVad, ParaformerOffline

os.environ["no_proxy"] = "localhost,127.0.0.1,::1"
###########################语音部分######################################
classifier = foreign_class(
    source="pretrained_models/local-speechbrain/emotion-recognition-wav2vec2-IEMOCAP",  # ".\\emotion-recognition-wav2vec2-IEMOCAP"
    pymodule_file="custom_interface.py",
    classname="CustomEncoderWav2vec2Classifier",
    savedir="pretrained_models/local-speechbrain/emotion-recognition-wav2vec2-IEMOCAP",
)
ASR_model = ParaformerOffline()
vad = FSMNVad()
punc = CttPunctuator()


def classify_continuous(audio):
    print(type(audio))
    print(audio)
    sample_rate, signal = audio  # 这是语音的输入
    signal = signal.astype(np.float32)
    signal /= np.max(np.abs(signal))
    sf.write("a.wav", signal, sample_rate)
    signal, sample_rate = torchaudio.load("a.wav")
    signal1 = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(
        signal
    )
    torchaudio.save("out.wav", signal1, 16000, encoding="PCM_S", bits_per_sample=16)
    Audio = "out.wav"
    speech, sample_rate = AudioReader.read_wav_file(Audio)
    if signal == "none":
        return "none", "none", "haha"
    else:
        segments = vad.segments_offline(speech)
        text_results = ""
        for part in segments:
            _result = ASR_model.infer_offline(
                speech[part[0] * 16 : part[1] * 16], hot_words="任意热词 空格分开"
            )
            text_results += punc.punctuate(_result)[0]

        out_prob, score, index, text_lab = classifier.classify_batch(signal1)
        return text_results, out_prob.squeeze(0).numpy(), text_lab[-1]


#########################################视频部分###################################
def clear_dynamic_info():
    return (
        gr.Video(value=None),
        gr.Plot(value=None),
        gr.Textbox(""),
    )


##################################设置各自的app类####################
with gr.Blocks(css="app.css") as video:
    with gr.Tab("Dynamic App"):
        gr.Markdown(value=DESCRIPTION_DYNAMIC)
        with gr.Row():
            with gr.Column(scale=2):
                input_video = gr.Video(
                    sources=["webcam", "upload"], elem_classes="video1", format='mp4'
                )
                with gr.Row():
                    clear_btn_dynamic = gr.Button(
                        value="Clear", interactive=True, scale=1
                    )
                    # submit_dynamic = gr.Button(
                    #     value="Submit", interactive=True, scale=1, elem_classes="submit"
                    # )
                    submit_and_rank = gr.Button(
                        value="Score", interactive=True, scale=1, elem_classes="submit"
                    )
            with gr.Column(scale=2, elem_classes="dl4"):
                with gr.Row():
                    output_score = gr.Textbox(label="scores")
                output_statistics = gr.Plot(
                    label="Statistics of emotions", elem_classes="stat"
                )
                output_audio=gr.Audio(interactive=False)
                audio_test_button=gr.Button("分析语音")
                button2=gr.Button("直接调取路径分析")
                out1=gr.Textbox(label="语音分析结果")
                out2=gr.Textbox(label="音频情感识别1")
                out3=gr.Textbox(label="音频情感识别2")
        gr.Examples(
            [
                "videos/video1.mp4",
                "videos/video2.mp4",
                "videos/sample.webm",
                "videos/cnm.mp4",
            ],
            [input_video],
        )

    with gr.Tab("Authors"):
        gr.Markdown(value=AUTHORS)

    clear_btn_dynamic.click(
        fn=clear_dynamic_info,
        inputs=[],
        outputs=[
            input_video,
            output_statistics,
            output_score,
        ],
        queue=True,
    )
    submit_and_rank.click(
        fn=preprocess_video_and_rank,
        inputs=input_video,
        outputs=[
            output_statistics,
            output_score,
            output_audio,
        ],
    )
    audio_test_button.click(
        fn=classify_continuous,
        inputs=output_audio,
        outputs=[out1,out2,out3]
    )
    button2.click(
        fn=classify_continuous,
        inputs=["audio.wav"],
        outputs=[out1,out2,out3]
    )

####################################
speech = gr.Interface(
    classify_continuous,
    gr.Audio(sources=["microphone"]),
    [
        gr.Text(label="语音识别结果"),
        gr.Text(label="音频情感识别1"),
        gr.Text(label="音频情感识别2"),
    ],
)

with gr.Blocks() as app:
    with gr.Tab("语音"):
        speech.render()
    with gr.Tab("视频"):
        video.render()

app.launch()