File size: 10,668 Bytes
890de26
 
 
 
 
 
 
 
6add720
890de26
 
 
 
 
 
 
 
f47ff49
 
 
890de26
ad7940b
 
890de26
 
 
 
 
 
 
 
 
 
 
f47ff49
 
1fa27cc
f47ff49
 
 
 
890de26
dc88262
6f5757a
dc88262
 
 
 
 
 
 
 
890de26
 
 
 
 
 
3744361
 
890de26
 
 
3744361
 
890de26
 
 
 
 
 
 
 
 
 
 
 
 
ceac5f8
5b8e5cd
ceac5f8
5b8e5cd
10d71a1
890de26
 
20ce06a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de1a106
20ce06a
 
6f5757a
20ce06a
 
 
 
890de26
 
 
 
 
 
 
 
83164e5
 
 
 
 
 
 
 
 
63231e5
83164e5
 
 
 
 
63231e5
83164e5
 
 
 
 
 
 
 
 
 
 
 
 
890de26
 
63231e5
 
 
 
 
 
 
 
 
 
 
7892708
63231e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad7940b
890de26
 
 
 
 
 
 
 
 
 
ad7940b
6add720
 
 
 
 
 
6b2f58c
 
6add720
 
 
0a89687
ad7940b
 
 
d0812f3
ad7940b
 
 
 
 
 
 
 
 
 
e67b5d2
83164e5
a45c068
83164e5
a45c068
4eefeea
 
ad7940b
 
 
 
f8f03c2
7cef7db
ad7940b
 
dd3e4c8
7cef7db
11803fe
6add720
da7eb82
6add720
6b2f58c
 
11803fe
ad7940b
20ce06a
 
 
 
 
 
 
 
ad7940b
20ce06a
 
 
7e7d111
20ce06a
 
 
 
 
 
 
 
de1a106
 
20ce06a
 
beb52e8
20ce06a
 
 
 
 
 
 
cf72411
ad7940b
cf72411
 
6f5757a
 
cf72411
890de26
c943742
cf72411
 
 
 
 
 
 
 
 
 
 
 
 
e6e6d43
cf72411
 
890de26
 
 
63231e5
 
ad7940b
cfe1036
beb52e8
 
cf72411
 
ad7940b
890de26
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import os

import gradio as gr
import numpy as np
import soundfile as sf
import torchaudio
from speechbrain.pretrained.interfaces import foreign_class

from app_utils import video_score,video_test
from authors import AUTHORS

# Importing necessary components for the Gradio app
from description import DESCRIPTION_DYNAMIC  # , DESCRIPTION_STATIC

# import scipy.io.wavfile as wav
from paraformer import AudioReader, CttPunctuator, FSMNVad, ParaformerOffline

from gradio_client import Client
client = Client("Liusuthu/TextDepression")

os.environ["no_proxy"] = "localhost,127.0.0.1,::1"


###########################语音部分######################################
classifier = foreign_class(
    source="pretrained_models/local-speechbrain/emotion-recognition-wav2vec2-IEMOCAP",  # ".\\emotion-recognition-wav2vec2-IEMOCAP"
    pymodule_file="custom_interface.py",
    classname="CustomEncoderWav2vec2Classifier",
    savedir="pretrained_models/local-speechbrain/emotion-recognition-wav2vec2-IEMOCAP",
)
ASR_model = ParaformerOffline()
vad = FSMNVad()
punc = CttPunctuator()

def text_api(text:str):
    result = client.predict(
        text,  # str  in '输入文字' Textbox component
        api_name="/predict",
    )
    return result


def get_text_score(text):
    string=text_api(text)
    part1 = str.partition(string, r"text")
    want1 = part1[2]
    label = want1[4:6]
    part2 = str.partition(string, r"probability")
    want2 = part2[2]
    prob = float(want2[3:-4])
    return label, prob

def classify_continuous(audio):
    print(type(audio))
    print(audio)
    sample_rate, signal = audio  # 这是语音的输入
    signal = signal.astype(np.float32)
    signal /= np.max(np.abs(signal))
    sf.write("data/a.wav", signal, sample_rate)
    signal, sample_rate = torchaudio.load("data/a.wav")
    signal1 = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(
        signal
    )
    torchaudio.save("data/out.wav", signal1, 16000, encoding="PCM_S", bits_per_sample=16)
    Audio = "data/out.wav"
    speech, sample_rate = AudioReader.read_wav_file(Audio)
    if signal == "none":
        return "none", "none", "haha"
    else:
        segments = vad.segments_offline(speech)
        text_results = ""
        for part in segments:
            _result = ASR_model.infer_offline(
                speech[part[0] * 16 : part[1] * 16], hot_words="任意热词 空格分开"
            )
            text_results += punc.punctuate(_result)[0]

        out_prob, score, index, text_lab = classifier.classify_batch(signal1)
        print(type(out_prob.squeeze(0).numpy()))
        print(out_prob.squeeze(0).numpy())
        print(type(text_lab[-1]))
        print(text_lab[-1])
        return text_results, out_prob.squeeze(0).numpy(), text_lab[-1], Audio


def speech_score(audio):
    print(type(audio))
    print(audio)
    sample_rate, signal = audio  # 这是语音的输入
    signal = signal.astype(np.float32)
    signal /= np.max(np.abs(signal))
    sf.write("data/a.wav", signal, sample_rate)
    signal, sample_rate = torchaudio.load("data/a.wav")
    signal1 = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(
        signal
    )
    torchaudio.save("data/out.wav", signal1, 16000, encoding="PCM_S", bits_per_sample=16)
    Audio = "data/out.wav"
    speech, sample_rate = AudioReader.read_wav_file(Audio)
    if signal == "none":
        return "none", "none", "haha"
    else:
        segments = vad.segments_offline(speech)
        text_results = ""
        for part in segments:
            _result = ASR_model.infer_offline(
                speech[part[0] * 16 : part[1] * 16], hot_words="任意热词 空格分开"
            )
            text_results += punc.punctuate(_result)[0]

        out_prob, score, index, text_lab = classifier.classify_batch(signal1)
        print(type(out_prob.squeeze(0).numpy()))
        print(out_prob.squeeze(0).numpy())
        print(type(text_lab[-1]))
        print(text_lab[-1])
        #return text_results, out_prob.squeeze(0).numpy(), text_lab[-1], Audio
        prob=out_prob.squeeze(0).numpy()
        print(prob)
        score2=10*prob[0]-10*prob[1]
        print("score2",score2)
        print(text_lab[-1])
        text_emo=str(get_text_score(text_results))
        print(text_emo)

        return score2,text_emo
        
#########################################视频部分###################################
def clear_dynamic_info():
    return (
        gr.Video(value=None),
        gr.Plot(value=None),
        gr.Textbox(""),
    )
##################################设置各自的app类####################
with gr.Blocks(css="app.css") as video: 
    with gr.Row():
        with gr.Column(scale=2):
            input_video = gr.Video(
                sources=["webcam", "upload"], elem_classes="video1", format='mp4'
            )
            with gr.Row():
                clear_btn_dynamic = gr.Button(
                    value="Clear", interactive=True, scale=1
                )
                # submit_dynamic = gr.Button(
                #     value="Submit", interactive=True, scale=1, elem_classes="submit"
                # )
                submit_and_rank = gr.Button(
                    value="Score", interactive=True, scale=1, elem_classes="submit"
                )
        with gr.Column(scale=2, elem_classes="dl4"):
            with gr.Row():
                output_score = gr.Textbox(label="scores")
            output_statistics = gr.Plot(
                label="Statistics of emotions", elem_classes="stat"
            )
            output_audio=gr.Audio(interactive=False)
            audio_test_button=gr.Button("分析语音")
            out1=gr.Textbox(label="语音分析结果")
            out2=gr.Textbox(label="音频情感识别1")
            out3=gr.Textbox(label="音频情感识别2")
            text_test_button=gr.Button("分析文本")
            text_result=gr.Textbox(interactive=False)


    clear_btn_dynamic.click(
        fn=clear_dynamic_info,
        inputs=[],
        outputs=[
            input_video,
            output_statistics,
            output_score,
        ],
        queue=True,
    )
    submit_and_rank.click(
        fn=video_score,
        inputs=input_video,
        outputs=[
            output_statistics,
            output_score,
            output_audio,
        ],
    )
    audio_test_button.click(
        fn=classify_continuous,
        inputs=output_audio,
        outputs=[out1,out2,out3]
    )
    text_test_button.click(
        fn=text_api,
        inputs=out1,
        outputs=text_result,
    )

####################################
speech = gr.Interface(
    classify_continuous,
    gr.Audio(sources=["microphone"]),
    [
        gr.Text(label="语音识别结果"),
        gr.Text(label="音频情感识别1"),
        gr.Text(label="音频情感识别2"),
    ],
)
############################################################
def clear_video():
    return (
        gr.Video(value=None),
        gr.Textbox(""),
        gr.Plot(value=None),
        gr.Audio(value=None),
        gr.Textbox(""),
        gr.Textbox(""),
    )


with gr.Blocks() as video_all:
    with gr.Row():
        with gr.Column(scale=2):
            input_video = gr.Video(
                sources=["webcam","upload"], elem_classes="video1", format='mp4'
            )
            with gr.Row():
                clear_1 = gr.Button(
                    value="Clear", interactive=True, scale=1
                )
                submit_1 = gr.Button(
                    value="Score", interactive=True, scale=1, elem_classes="submit"
                )
        with gr.Column(scale=2):
            with gr.Row():
                score1 = gr.Textbox(label="score1")
            output_statistics = gr.Plot(
                    label="Statistics of emotions", elem_classes="stat",visible=False,
            )
            output_audio=gr.Audio(interactive=False,visible=False)
            score2=gr.Textbox(label="score2")
            score3=gr.Textbox(label="score3")

    clear_1.click(
        fn=clear_video,
        inputs=[],
        outputs=[input_video,score1,output_statistics,output_audio,score2,score3],
        queue=True,
    )
    submit_1.click(
        fn=video_test,
        inputs=input_video,
        outputs=[
            output_statistics,
            score1,            
            output_audio,
            score2,
            score3,
        ],
    )
###################################################################
def clear_2():
    return (
        gr.Audio(value=None),
        gr.Textbox(""),
        gr.Textbox(""),
    )


with gr.Blocks() as speech_all:
    with gr.Row():
        with gr.Column(scale=2):
            input_audio=gr.Audio(sources="microphone")
            with gr.Row():
                clear_audio = gr.Button(
                    value="Clear", interactive=True, scale=1
                )
                submit_audio = gr.Button(
                    value="Score", interactive=True, scale=1, elem_classes="submit"
                )
        with gr.Column(scale=2):
            score2=gr.Textbox(interactive=False,label="score2")
            text_emo=gr.Textbox(interactive=False,label="text_emo")

    clear_audio.click(
        fn=clear_2,
        outputs=[input_audio,score2,text_emo]
    )
    submit_audio.click(
        fn=speech_score,
        inputs=[input_audio],
        outputs=[score2,text_emo],
    )
###################################################################

def clear_3():
    return gr.Textbox(""),gr.Textbox("")
def text_score(text):    
    result=str(get_text_score(text))
    return result

with gr.Blocks() as text_all:
    with gr.Row():
        with gr.Column(scale=2):
            input_text=gr.Textbox(label="input")
            with gr.Row():
                clear_text = gr.Button(
                    value="Clear", interactive=True, scale=1
                )
                submit_text = gr.Button(
                    value="Score", interactive=True, scale=1, elem_classes="submit"
                )
        with gr.Column(scale=2):
            text_emo=gr.Textbox(label="text_emo")
            
    clear_text.click(clear_3,outputs=[input_text,text_emo])    
    submit_text.click(text_score,inputs=input_text,outputs=text_emo)
    
with gr.Blocks() as app:
    with gr.Tab("语音"):
        speech.render()
    with gr.Tab("视频"):
        video.render()
    with gr.Tab("视频集成打分"):
        video_all.render()
    with gr.Tab("语音集成打分"):
        speech_all.render()
    with gr.Tab("文本打分"):
        text_all.render()
        
app.launch()