File size: 33,414 Bytes
890de26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
# -*- coding:utf-8 -*-
# @FileName  :e2e_vad.py
# @Time      :2023/4/3 17:02
# @Author    :lovemefan
# @Email     :[email protected]
import logging
import math
from enum import Enum
from pathlib import Path
from typing import Any, Dict, List, Tuple

import numpy as np

from paraformer.runtime.python.utils.logger import logger
from paraformer.runtime.python.utils.vadOrtInferRuntimeSession import \
    VadOrtInferRuntimeSession


class VadStateMachine(Enum):
    kVadInStateStartPointNotDetected = 1
    kVadInStateInSpeechSegment = 2
    kVadInStateEndPointDetected = 3


class FrameState(Enum):
    kFrameStateInvalid = -1
    kFrameStateSpeech = 1
    kFrameStateSil = 0


# final voice/unvoice state per frame
class AudioChangeState(Enum):
    kChangeStateSpeech2Speech = 0
    kChangeStateSpeech2Sil = 1
    kChangeStateSil2Sil = 2
    kChangeStateSil2Speech = 3
    kChangeStateNoBegin = 4
    kChangeStateInvalid = 5


class VadDetectMode(Enum):
    kVadSingleUtteranceDetectMode = 0
    kVadMutipleUtteranceDetectMode = 1


class VADXOptions:
    def __init__(
        self,
        sample_rate: int = 16000,
        detect_mode: int = VadDetectMode.kVadMutipleUtteranceDetectMode.value,
        snr_mode: int = 0,
        max_end_silence_time: int = 800,
        max_start_silence_time: int = 3000,
        do_start_point_detection: bool = True,
        do_end_point_detection: bool = True,
        window_size_ms: int = 200,
        sil_to_speech_time_thres: int = 150,
        speech_to_sil_time_thres: int = 150,
        speech_2_noise_ratio: float = 1.0,
        do_extend: int = 1,
        lookback_time_start_point: int = 200,
        lookahead_time_end_point: int = 100,
        max_single_segment_time: int = 60000,
        nn_eval_block_size: int = 8,
        dcd_block_size: int = 4,
        snr_thres: int = -100.0,
        noise_frame_num_used_for_snr: int = 100,
        decibel_thres: int = -100.0,
        speech_noise_thres: float = 0.6,
        fe_prior_thres: float = 1e-4,
        silence_pdf_num: int = 1,
        sil_pdf_ids: List[int] = [0],
        speech_noise_thresh_low: float = -0.1,
        speech_noise_thresh_high: float = 0.3,
        output_frame_probs: bool = False,
        frame_in_ms: int = 10,
        frame_length_ms: int = 25,
    ):
        self.sample_rate = sample_rate
        self.detect_mode = detect_mode
        self.snr_mode = snr_mode
        self.max_end_silence_time = max_end_silence_time
        self.max_start_silence_time = max_start_silence_time
        self.do_start_point_detection = do_start_point_detection
        self.do_end_point_detection = do_end_point_detection
        self.window_size_ms = window_size_ms
        self.sil_to_speech_time_thres = sil_to_speech_time_thres
        self.speech_to_sil_time_thres = speech_to_sil_time_thres
        self.speech_2_noise_ratio = speech_2_noise_ratio
        self.do_extend = do_extend
        self.lookback_time_start_point = lookback_time_start_point
        self.lookahead_time_end_point = lookahead_time_end_point
        self.max_single_segment_time = max_single_segment_time
        self.nn_eval_block_size = nn_eval_block_size
        self.dcd_block_size = dcd_block_size
        self.snr_thres = snr_thres
        self.noise_frame_num_used_for_snr = noise_frame_num_used_for_snr
        self.decibel_thres = decibel_thres
        self.speech_noise_thres = speech_noise_thres
        self.fe_prior_thres = fe_prior_thres
        self.silence_pdf_num = silence_pdf_num
        self.sil_pdf_ids = sil_pdf_ids
        self.speech_noise_thresh_low = speech_noise_thresh_low
        self.speech_noise_thresh_high = speech_noise_thresh_high
        self.output_frame_probs = output_frame_probs
        self.frame_in_ms = frame_in_ms
        self.frame_length_ms = frame_length_ms


class E2EVadSpeechBufWithDoa(object):
    def __init__(self):
        self.start_ms = 0
        self.end_ms = 0
        self.buffer = []
        self.contain_seg_start_point = False
        self.contain_seg_end_point = False
        self.doa = 0

    def reset(self):
        self.start_ms = 0
        self.end_ms = 0
        self.buffer = []
        self.contain_seg_start_point = False
        self.contain_seg_end_point = False
        self.doa = 0


class E2EVadFrameProb(object):
    def __init__(self):
        self.noise_prob = 0.0
        self.speech_prob = 0.0
        self.score = 0.0
        self.frame_id = 0
        self.frm_state = 0


class WindowDetector(object):
    def __init__(
        self,
        window_size_ms: int,
        sil_to_speech_time: int,
        speech_to_sil_time: int,
        frame_size_ms: int,
    ):
        self.window_size_ms = window_size_ms
        self.sil_to_speech_time = sil_to_speech_time
        self.speech_to_sil_time = speech_to_sil_time
        self.frame_size_ms = frame_size_ms

        self.win_size_frame = int(window_size_ms / frame_size_ms)
        self.win_sum = 0
        self.win_state = [0] * self.win_size_frame  # 初始化窗

        self.cur_win_pos = 0
        self.pre_frame_state = FrameState.kFrameStateSil
        self.cur_frame_state = FrameState.kFrameStateSil
        self.sil_to_speech_frmcnt_thres = int(sil_to_speech_time / frame_size_ms)
        self.speech_to_sil_frmcnt_thres = int(speech_to_sil_time / frame_size_ms)

        self.voice_last_frame_count = 0
        self.noise_last_frame_count = 0
        self.hydre_frame_count = 0

    def reset(self) -> None:
        self.cur_win_pos = 0
        self.win_sum = 0
        self.win_state = [0] * self.win_size_frame
        self.pre_frame_state = FrameState.kFrameStateSil
        self.cur_frame_state = FrameState.kFrameStateSil
        self.voice_last_frame_count = 0
        self.noise_last_frame_count = 0
        self.hydre_frame_count = 0

    def get_win_size(self) -> int:
        return int(self.win_size_frame)

    def detect_one_frame(
        self, frameState: FrameState, frame_count: int
    ) -> AudioChangeState:
        cur_frame_state = FrameState.kFrameStateSil
        if frameState == FrameState.kFrameStateSpeech:
            cur_frame_state = 1
        elif frameState == FrameState.kFrameStateSil:
            cur_frame_state = 0
        else:
            return AudioChangeState.kChangeStateInvalid
        self.win_sum -= self.win_state[self.cur_win_pos]
        self.win_sum += cur_frame_state
        self.win_state[self.cur_win_pos] = cur_frame_state
        self.cur_win_pos = (self.cur_win_pos + 1) % self.win_size_frame

        if (
            self.pre_frame_state == FrameState.kFrameStateSil
            and self.win_sum >= self.sil_to_speech_frmcnt_thres
        ):
            self.pre_frame_state = FrameState.kFrameStateSpeech
            return AudioChangeState.kChangeStateSil2Speech

        if (
            self.pre_frame_state == FrameState.kFrameStateSpeech
            and self.win_sum <= self.speech_to_sil_frmcnt_thres
        ):
            self.pre_frame_state = FrameState.kFrameStateSil
            return AudioChangeState.kChangeStateSpeech2Sil

        if self.pre_frame_state == FrameState.kFrameStateSil:
            return AudioChangeState.kChangeStateSil2Sil
        if self.pre_frame_state == FrameState.kFrameStateSpeech:
            return AudioChangeState.kChangeStateSpeech2Speech
        return AudioChangeState.kChangeStateInvalid

    def frame_size_ms(self) -> int:
        return int(self.frame_size_ms)


class E2EVadModel:
    def __init__(self, config, vad_post_args: Dict[str, Any], root_dir: Path):
        super(E2EVadModel, self).__init__()
        self.vad_opts = VADXOptions(**vad_post_args)
        self.windows_detector = WindowDetector(
            self.vad_opts.window_size_ms,
            self.vad_opts.sil_to_speech_time_thres,
            self.vad_opts.speech_to_sil_time_thres,
            self.vad_opts.frame_in_ms,
        )
        self.model = VadOrtInferRuntimeSession(config, root_dir)
        # init variables
        self.is_final = False
        self.data_buf_start_frame = 0
        self.frm_cnt = 0
        self.latest_confirmed_speech_frame = 0
        self.lastest_confirmed_silence_frame = -1
        self.continous_silence_frame_count = 0
        self.vad_state_machine = VadStateMachine.kVadInStateStartPointNotDetected
        self.confirmed_start_frame = -1
        self.confirmed_end_frame = -1
        self.number_end_time_detected = 0
        self.sil_frame = 0
        self.sil_pdf_ids = self.vad_opts.sil_pdf_ids
        self.noise_average_decibel = -100.0
        self.pre_end_silence_detected = False
        self.next_seg = True

        self.output_data_buf = []
        self.output_data_buf_offset = 0
        self.frame_probs = []
        self.max_end_sil_frame_cnt_thresh = (
            self.vad_opts.max_end_silence_time - self.vad_opts.speech_to_sil_time_thres
        )
        self.speech_noise_thres = self.vad_opts.speech_noise_thres
        self.scores = None
        self.max_time_out = False
        self.decibel = []
        self.data_buf_size = 0
        self.data_buf_all_size = 0
        self.waveform = None
        self.reset_detection()

    def all_reset_detection(self):
        self.is_final = False
        self.data_buf_start_frame = 0
        self.frm_cnt = 0
        self.latest_confirmed_speech_frame = 0
        self.lastest_confirmed_silence_frame = -1
        self.continous_silence_frame_count = 0
        self.vad_state_machine = VadStateMachine.kVadInStateStartPointNotDetected
        self.confirmed_start_frame = -1
        self.confirmed_end_frame = -1
        self.number_end_time_detected = 0
        self.sil_frame = 0
        self.sil_pdf_ids = self.vad_opts.sil_pdf_ids
        self.noise_average_decibel = -100.0
        self.pre_end_silence_detected = False
        self.next_seg = True

        self.output_data_buf = []
        self.output_data_buf_offset = 0
        self.frame_probs = []
        self.max_end_sil_frame_cnt_thresh = (
            self.vad_opts.max_end_silence_time - self.vad_opts.speech_to_sil_time_thres
        )
        self.speech_noise_thres = self.vad_opts.speech_noise_thres
        self.scores = None
        self.max_time_out = False
        self.decibel = []
        self.data_buf = 0
        self.data_buf_all = 0
        self.waveform = None
        self.reset_detection()

    def reset_detection(self):
        self.continous_silence_frame_count = 0
        self.latest_confirmed_speech_frame = 0
        self.lastest_confirmed_silence_frame = -1
        self.confirmed_start_frame = -1
        self.confirmed_end_frame = -1
        self.vad_state_machine = VadStateMachine.kVadInStateStartPointNotDetected
        self.windows_detector.reset()
        self.sil_frame = 0
        self.frame_probs = []

    def compute_decibel(self) -> None:
        frame_sample_length = int(
            self.vad_opts.frame_length_ms * self.vad_opts.sample_rate / 1000
        )
        frame_shift_length = int(
            self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000
        )
        if self.data_buf_all_size == 0:
            self.data_buf_all_size = len(self.waveform[0])
            self.data_buf_size = self.data_buf_all_size
        else:
            self.data_buf_all_size += len(self.waveform[0])
        for offset in range(
            0, self.waveform.shape[1] - frame_sample_length + 1, frame_shift_length
        ):
            self.decibel.append(
                10
                * np.log10(
                    np.square(
                        self.waveform[0][offset : offset + frame_sample_length]
                    ).sum()
                    + 1e-6
                )
            )

    def compute_scores(self, feats: np.ndarray) -> None:
        scores = self.model(feats)
        self.vad_opts.nn_eval_block_size = scores[0].shape[1]
        self.frm_cnt += scores[0].shape[1]  # count total frames
        if isinstance(feats, list):
            # return B * T * D
            feats = feats[0]

        assert (
            scores[0].shape[1] == feats.shape[1]
        ), "The shape between feats and scores does not match"

        if self.scores is None:
            self.scores = scores[0]  # the first calculation
        else:
            self.scores = np.concatenate((self.scores, scores[0]), axis=1)

        return scores[1:]

    def pop_data_buf_till_frame(self, frame_idx: int) -> None:  # need check again
        while self.data_buf_start_frame < frame_idx:
            if self.data_buf_size >= int(
                self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000
            ):
                self.data_buf_start_frame += 1
                self.data_buf_size = (
                    self.data_buf_all_size
                    - self.data_buf_start_frame
                    * int(self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000)
                )

    def pop_data_to_output_buf(
        self,
        start_frm: int,
        frm_cnt: int,
        first_frm_is_start_point: bool,
        last_frm_is_end_point: bool,
        end_point_is_sent_end: bool,
    ) -> None:
        self.pop_data_buf_till_frame(start_frm)
        expected_sample_number = int(
            frm_cnt * self.vad_opts.sample_rate * self.vad_opts.frame_in_ms / 1000
        )
        if last_frm_is_end_point:
            extra_sample = max(
                0,
                int(
                    self.vad_opts.frame_length_ms * self.vad_opts.sample_rate / 1000
                    - self.vad_opts.sample_rate * self.vad_opts.frame_in_ms / 1000
                ),
            )
            expected_sample_number += int(extra_sample)
        if end_point_is_sent_end:
            expected_sample_number = max(expected_sample_number, self.data_buf_size)
        if self.data_buf_size < expected_sample_number:
            logging.error("error in calling pop data_buf\n")

        if len(self.output_data_buf) == 0 or first_frm_is_start_point:
            self.output_data_buf.append(E2EVadSpeechBufWithDoa())
            self.output_data_buf[-1].reset()
            self.output_data_buf[-1].start_ms = start_frm * self.vad_opts.frame_in_ms
            self.output_data_buf[-1].end_ms = self.output_data_buf[-1].start_ms
            self.output_data_buf[-1].doa = 0
        cur_seg = self.output_data_buf[-1]
        if cur_seg.end_ms != start_frm * self.vad_opts.frame_in_ms:
            logging.error("warning\n")
        out_pos = len(cur_seg.buffer)  # cur_seg.buff现在没做任何操作
        data_to_pop = 0
        if end_point_is_sent_end:
            data_to_pop = expected_sample_number
        else:
            data_to_pop = int(
                frm_cnt * self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000
            )
        if data_to_pop > self.data_buf_size:
            logging.error("VAD data_to_pop is bigger than self.data_buf.size()!!!\n")
            data_to_pop = self.data_buf_size
            expected_sample_number = self.data_buf_size

        cur_seg.doa = 0
        for sample_cpy_out in range(0, data_to_pop):
            # cur_seg.buffer[out_pos ++] = data_buf_.back();
            out_pos += 1
        for sample_cpy_out in range(data_to_pop, expected_sample_number):
            # cur_seg.buffer[out_pos++] = data_buf_.back()
            out_pos += 1
        if cur_seg.end_ms != start_frm * self.vad_opts.frame_in_ms:
            logging.error("Something wrong with the VAD algorithm\n")
        self.data_buf_start_frame += frm_cnt
        cur_seg.end_ms = (start_frm + frm_cnt) * self.vad_opts.frame_in_ms
        if first_frm_is_start_point:
            cur_seg.contain_seg_start_point = True
        if last_frm_is_end_point:
            cur_seg.contain_seg_end_point = True

    def on_silence_detected(self, valid_frame: int):
        self.lastest_confirmed_silence_frame = valid_frame
        if self.vad_state_machine == VadStateMachine.kVadInStateStartPointNotDetected:
            self.pop_data_buf_till_frame(valid_frame)
        # silence_detected_callback_
        # pass

    def on_voice_detected(self, valid_frame: int) -> None:
        self.latest_confirmed_speech_frame = valid_frame
        self.pop_data_to_output_buf(valid_frame, 1, False, False, False)

    def on_voice_start(self, start_frame: int, fake_result: bool = False) -> None:
        if self.vad_opts.do_start_point_detection:
            pass
        if self.confirmed_start_frame != -1:
            logging.error("not reset vad properly\n")
        else:
            self.confirmed_start_frame = start_frame

        if (
            not fake_result
            and self.vad_state_machine
            == VadStateMachine.kVadInStateStartPointNotDetected
        ):
            self.pop_data_to_output_buf(
                self.confirmed_start_frame, 1, True, False, False
            )

    def on_voice_end(
        self, end_frame: int, fake_result: bool, is_last_frame: bool
    ) -> None:
        for t in range(self.latest_confirmed_speech_frame + 1, end_frame):
            self.on_voice_detected(t)
        if self.vad_opts.do_end_point_detection:
            pass
        if self.confirmed_end_frame != -1:
            logging.error("not reset vad properly\n")
        else:
            self.confirmed_end_frame = end_frame
        if not fake_result:
            self.sil_frame = 0
            self.pop_data_to_output_buf(
                self.confirmed_end_frame, 1, False, True, is_last_frame
            )
        self.number_end_time_detected += 1

    def maybe_on_voice_end_last_frame(
        self, is_final_frame: bool, cur_frm_idx: int
    ) -> None:
        if is_final_frame:
            self.on_voice_end(cur_frm_idx, False, True)
            self.vad_state_machine = VadStateMachine.kVadInStateEndPointDetected

    def get_latency(self) -> int:
        return int(self.latency_frm_num_at_start_point() * self.vad_opts.frame_in_ms)

    def latency_frm_num_at_start_point(self) -> int:
        vad_latency = self.windows_detector.get_win_size()
        if self.vad_opts.do_extend:
            vad_latency += int(
                self.vad_opts.lookback_time_start_point / self.vad_opts.frame_in_ms
            )
        return vad_latency

    def get_frame_state(self, t: int) -> FrameState:
        frame_state = FrameState.kFrameStateInvalid
        cur_decibel = self.decibel[t]
        cur_snr = cur_decibel - self.noise_average_decibel
        # for each frame, calc log posterior probability of each state
        if cur_decibel < self.vad_opts.decibel_thres:
            frame_state = FrameState.kFrameStateSil
            self.detect_one_frame(frame_state, t, False)
            return frame_state

        sum_score = 0.0
        noise_prob = 0.0
        assert len(self.sil_pdf_ids) == self.vad_opts.silence_pdf_num
        if len(self.sil_pdf_ids) > 0:
            assert len(self.scores) == 1  # 只支持batch_size = 1的测试
            sil_pdf_scores = [
                self.scores[0][t][sil_pdf_id] for sil_pdf_id in self.sil_pdf_ids
            ]
            sum_score = sum(sil_pdf_scores)
            noise_prob = math.log(sum_score) * self.vad_opts.speech_2_noise_ratio
            total_score = 1.0
            sum_score = total_score - sum_score
        speech_prob = math.log(sum_score)
        if self.vad_opts.output_frame_probs:
            frame_prob = E2EVadFrameProb()
            frame_prob.noise_prob = noise_prob
            frame_prob.speech_prob = speech_prob
            frame_prob.score = sum_score
            frame_prob.frame_id = t
            self.frame_probs.append(frame_prob)
        if math.exp(speech_prob) >= math.exp(noise_prob) + self.speech_noise_thres:
            if (
                cur_snr >= self.vad_opts.snr_thres
                and cur_decibel >= self.vad_opts.decibel_thres
            ):
                frame_state = FrameState.kFrameStateSpeech
            else:
                frame_state = FrameState.kFrameStateSil
        else:
            frame_state = FrameState.kFrameStateSil
            if self.noise_average_decibel < -99.9:
                self.noise_average_decibel = cur_decibel
            else:
                self.noise_average_decibel = (
                    cur_decibel
                    + self.noise_average_decibel
                    * (self.vad_opts.noise_frame_num_used_for_snr - 1)
                ) / self.vad_opts.noise_frame_num_used_for_snr

        return frame_state

    def infer_offline(
        self,
        feats: np.ndarray,
        waveform: np.ndarray,
        in_cache: Dict[str, np.ndarray] = dict(),
        is_final: bool = False,
    ) -> Tuple[List[List[List[int]]], Dict[str, np.ndarray]]:
        self.waveform = waveform
        self.compute_decibel()

        self.compute_scores(feats)
        if not is_final:
            self.detect_common_frames()
        else:
            self.detect_last_frames()
        segments = []
        for batch_num in range(0, feats.shape[0]):  # only support batch_size = 1 now
            segment_batch = []
            if len(self.output_data_buf) > 0:
                for i in range(self.output_data_buf_offset, len(self.output_data_buf)):
                    if (
                        not self.output_data_buf[i].contain_seg_start_point
                        or not self.output_data_buf[i].contain_seg_end_point
                    ):
                        continue
                    segment = [
                        self.output_data_buf[i].start_ms,
                        self.output_data_buf[i].end_ms,
                    ]
                    segment_batch.append(segment)
                    self.output_data_buf_offset += 1  # need update this parameter
            if segment_batch:
                segments.append(segment_batch)
        if is_final:
            # reset class variables and clear the dict for the next query
            self.all_reset_detection()
        return segments, in_cache

    def infer_online(
        self,
        feats: np.ndarray,
        waveform: np.ndarray,
        in_cache: list = None,
        is_final: bool = False,
        max_end_sil: int = 800,
    ) -> Tuple[List[List[List[int]]], Dict[str, np.ndarray]]:
        feats = [feats]
        if in_cache is None:
            in_cache = []

        self.max_end_sil_frame_cnt_thresh = (
            max_end_sil - self.vad_opts.speech_to_sil_time_thres
        )
        self.waveform = waveform  # compute decibel for each frame
        feats.extend(in_cache)
        in_cache = self.compute_scores(feats)
        self.compute_decibel()

        if is_final:
            self.detect_last_frames()
        else:
            self.detect_common_frames()

        segments = []
        # only support batch_size = 1 now
        for batch_num in range(0, feats[0].shape[0]):
            if len(self.output_data_buf) > 0:
                for i in range(self.output_data_buf_offset, len(self.output_data_buf)):
                    if not self.output_data_buf[i].contain_seg_start_point:
                        continue
                    if (
                        not self.next_seg
                        and not self.output_data_buf[i].contain_seg_end_point
                    ):
                        continue
                    start_ms = self.output_data_buf[i].start_ms if self.next_seg else -1
                    if self.output_data_buf[i].contain_seg_end_point:
                        end_ms = self.output_data_buf[i].end_ms
                        self.next_seg = True
                        self.output_data_buf_offset += 1
                    else:
                        end_ms = -1
                        self.next_seg = False
                    segments.append([start_ms, end_ms])

        return segments, in_cache

    def get_frames_state(
        self,
        feats: np.ndarray,
        waveform: np.ndarray,
        in_cache: list = None,
        is_final: bool = False,
        max_end_sil: int = 800,
    ):
        feats = [feats]
        states = []
        if in_cache is None:
            in_cache = []

        self.max_end_sil_frame_cnt_thresh = (
            max_end_sil - self.vad_opts.speech_to_sil_time_thres
        )
        self.waveform = waveform  # compute decibel for each frame
        feats.extend(in_cache)
        in_cache = self.compute_scores(feats)
        self.compute_decibel()

        if self.vad_state_machine == VadStateMachine.kVadInStateEndPointDetected:
            return states

        for i in range(self.vad_opts.nn_eval_block_size - 1, -1, -1):
            frame_state = FrameState.kFrameStateInvalid
            frame_state = self.get_frame_state(self.frm_cnt - 1 - i)
            states.append(frame_state)
            if i == 0 and is_final:
                logger.info("last frame detected")
                self.detect_one_frame(frame_state, self.frm_cnt - 1, True)
            else:
                self.detect_one_frame(frame_state, self.frm_cnt - 1 - i, False)

        return states

    def detect_common_frames(self) -> int:
        if self.vad_state_machine == VadStateMachine.kVadInStateEndPointDetected:
            return 0
        for i in range(self.vad_opts.nn_eval_block_size - 1, -1, -1):
            frame_state = FrameState.kFrameStateInvalid
            frame_state = self.get_frame_state(self.frm_cnt - 1 - i)
            # print(f"cur frame: {self.frm_cnt - 1 - i}, state is {frame_state}")
            self.detect_one_frame(frame_state, self.frm_cnt - 1 - i, False)

        return 0

    def detect_last_frames(self) -> int:
        if self.vad_state_machine == VadStateMachine.kVadInStateEndPointDetected:
            return 0
        for i in range(self.vad_opts.nn_eval_block_size - 1, -1, -1):
            frame_state = FrameState.kFrameStateInvalid
            frame_state = self.get_frame_state(self.frm_cnt - 1 - i)
            if i != 0:
                self.detect_one_frame(frame_state, self.frm_cnt - 1 - i, False)
            else:
                self.detect_one_frame(frame_state, self.frm_cnt - 1, True)

        return 0

    def detect_one_frame(
        self, cur_frm_state: FrameState, cur_frm_idx: int, is_final_frame: bool
    ) -> None:
        tmp_cur_frm_state = FrameState.kFrameStateInvalid
        if cur_frm_state == FrameState.kFrameStateSpeech:
            if math.fabs(1.0) > float(self.vad_opts.fe_prior_thres):
                tmp_cur_frm_state = FrameState.kFrameStateSpeech
            else:
                tmp_cur_frm_state = FrameState.kFrameStateSil
        elif cur_frm_state == FrameState.kFrameStateSil:
            tmp_cur_frm_state = FrameState.kFrameStateSil
        state_change = self.windows_detector.detect_one_frame(
            tmp_cur_frm_state, cur_frm_idx
        )
        frm_shift_in_ms = self.vad_opts.frame_in_ms
        if AudioChangeState.kChangeStateSil2Speech == state_change:
            self.continous_silence_frame_count = 0
            self.pre_end_silence_detected = False

            if (
                self.vad_state_machine
                == VadStateMachine.kVadInStateStartPointNotDetected
            ):
                start_frame = max(
                    self.data_buf_start_frame,
                    cur_frm_idx - self.latency_frm_num_at_start_point(),
                )
                self.on_voice_start(start_frame)
                self.vad_state_machine = VadStateMachine.kVadInStateInSpeechSegment
                for t in range(start_frame + 1, cur_frm_idx + 1):
                    self.on_voice_detected(t)
            elif self.vad_state_machine == VadStateMachine.kVadInStateInSpeechSegment:
                for t in range(self.latest_confirmed_speech_frame + 1, cur_frm_idx):
                    self.on_voice_detected(t)
                if (
                    cur_frm_idx - self.confirmed_start_frame + 1
                    > self.vad_opts.max_single_segment_time / frm_shift_in_ms
                ):
                    self.on_voice_end(cur_frm_idx, False, False)
                    self.vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
                elif not is_final_frame:
                    self.on_voice_detected(cur_frm_idx)
                else:
                    self.maybe_on_voice_end_last_frame(is_final_frame, cur_frm_idx)
            else:
                pass
        elif AudioChangeState.kChangeStateSpeech2Sil == state_change:
            self.continous_silence_frame_count = 0
            if (
                self.vad_state_machine
                == VadStateMachine.kVadInStateStartPointNotDetected
            ):
                pass
            elif self.vad_state_machine == VadStateMachine.kVadInStateInSpeechSegment:
                if (
                    cur_frm_idx - self.confirmed_start_frame + 1
                    > self.vad_opts.max_single_segment_time / frm_shift_in_ms
                ):
                    self.on_voice_end(cur_frm_idx, False, False)
                    self.vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
                elif not is_final_frame:
                    self.on_voice_detected(cur_frm_idx)
                else:
                    self.maybe_on_voice_end_last_frame(is_final_frame, cur_frm_idx)
            else:
                pass
        elif AudioChangeState.kChangeStateSpeech2Speech == state_change:
            self.continous_silence_frame_count = 0
            if self.vad_state_machine == VadStateMachine.kVadInStateInSpeechSegment:
                if (
                    cur_frm_idx - self.confirmed_start_frame + 1
                    > self.vad_opts.max_single_segment_time / frm_shift_in_ms
                ):
                    self.max_time_out = True
                    self.on_voice_end(cur_frm_idx, False, False)
                    self.vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
                elif not is_final_frame:
                    self.on_voice_detected(cur_frm_idx)
                else:
                    self.maybe_on_voice_end_last_frame(is_final_frame, cur_frm_idx)
            else:
                pass
        elif AudioChangeState.kChangeStateSil2Sil == state_change:
            self.continous_silence_frame_count += 1
            if (
                self.vad_state_machine
                == VadStateMachine.kVadInStateStartPointNotDetected
            ):
                # silence timeout, return zero length decision
                if (
                    (
                        self.vad_opts.detect_mode
                        == VadDetectMode.kVadSingleUtteranceDetectMode.value
                    )
                    and (
                        self.continous_silence_frame_count * frm_shift_in_ms
                        > self.vad_opts.max_start_silence_time
                    )
                ) or (is_final_frame and self.number_end_time_detected == 0):
                    for t in range(
                        self.lastest_confirmed_silence_frame + 1, cur_frm_idx
                    ):
                        self.on_silence_detected(t)
                    self.on_voice_start(0, True)
                    self.on_voice_end(0, True, False)
                    self.vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
                else:
                    if cur_frm_idx >= self.latency_frm_num_at_start_point():
                        self.on_silence_detected(
                            cur_frm_idx - self.latency_frm_num_at_start_point()
                        )
            elif self.vad_state_machine == VadStateMachine.kVadInStateInSpeechSegment:
                if (
                    self.continous_silence_frame_count * frm_shift_in_ms
                    >= self.max_end_sil_frame_cnt_thresh
                ):
                    lookback_frame = int(
                        self.max_end_sil_frame_cnt_thresh / frm_shift_in_ms
                    )
                    if self.vad_opts.do_extend:
                        lookback_frame -= int(
                            self.vad_opts.lookahead_time_end_point / frm_shift_in_ms
                        )
                        lookback_frame -= 1
                        lookback_frame = max(0, lookback_frame)
                    self.on_voice_end(cur_frm_idx - lookback_frame, False, False)
                    self.vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
                elif (
                    cur_frm_idx - self.confirmed_start_frame + 1
                    > self.vad_opts.max_single_segment_time / frm_shift_in_ms
                ):
                    self.on_voice_end(cur_frm_idx, False, False)
                    self.vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
                elif self.vad_opts.do_extend and not is_final_frame:
                    if self.continous_silence_frame_count <= int(
                        self.vad_opts.lookahead_time_end_point / frm_shift_in_ms
                    ):
                        self.on_voice_detected(cur_frm_idx)
                else:
                    self.maybe_on_voice_end_last_frame(is_final_frame, cur_frm_idx)
            else:
                pass

        if (
            self.vad_state_machine == VadStateMachine.kVadInStateEndPointDetected
            and self.vad_opts.detect_mode
            == VadDetectMode.kVadMutipleUtteranceDetectMode.value
        ):
            self.reset_detection()