Spaces:
Runtime error
Runtime error
File size: 33,414 Bytes
890de26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 |
# -*- coding:utf-8 -*-
# @FileName :e2e_vad.py
# @Time :2023/4/3 17:02
# @Author :lovemefan
# @Email :[email protected]
import logging
import math
from enum import Enum
from pathlib import Path
from typing import Any, Dict, List, Tuple
import numpy as np
from paraformer.runtime.python.utils.logger import logger
from paraformer.runtime.python.utils.vadOrtInferRuntimeSession import \
VadOrtInferRuntimeSession
class VadStateMachine(Enum):
kVadInStateStartPointNotDetected = 1
kVadInStateInSpeechSegment = 2
kVadInStateEndPointDetected = 3
class FrameState(Enum):
kFrameStateInvalid = -1
kFrameStateSpeech = 1
kFrameStateSil = 0
# final voice/unvoice state per frame
class AudioChangeState(Enum):
kChangeStateSpeech2Speech = 0
kChangeStateSpeech2Sil = 1
kChangeStateSil2Sil = 2
kChangeStateSil2Speech = 3
kChangeStateNoBegin = 4
kChangeStateInvalid = 5
class VadDetectMode(Enum):
kVadSingleUtteranceDetectMode = 0
kVadMutipleUtteranceDetectMode = 1
class VADXOptions:
def __init__(
self,
sample_rate: int = 16000,
detect_mode: int = VadDetectMode.kVadMutipleUtteranceDetectMode.value,
snr_mode: int = 0,
max_end_silence_time: int = 800,
max_start_silence_time: int = 3000,
do_start_point_detection: bool = True,
do_end_point_detection: bool = True,
window_size_ms: int = 200,
sil_to_speech_time_thres: int = 150,
speech_to_sil_time_thres: int = 150,
speech_2_noise_ratio: float = 1.0,
do_extend: int = 1,
lookback_time_start_point: int = 200,
lookahead_time_end_point: int = 100,
max_single_segment_time: int = 60000,
nn_eval_block_size: int = 8,
dcd_block_size: int = 4,
snr_thres: int = -100.0,
noise_frame_num_used_for_snr: int = 100,
decibel_thres: int = -100.0,
speech_noise_thres: float = 0.6,
fe_prior_thres: float = 1e-4,
silence_pdf_num: int = 1,
sil_pdf_ids: List[int] = [0],
speech_noise_thresh_low: float = -0.1,
speech_noise_thresh_high: float = 0.3,
output_frame_probs: bool = False,
frame_in_ms: int = 10,
frame_length_ms: int = 25,
):
self.sample_rate = sample_rate
self.detect_mode = detect_mode
self.snr_mode = snr_mode
self.max_end_silence_time = max_end_silence_time
self.max_start_silence_time = max_start_silence_time
self.do_start_point_detection = do_start_point_detection
self.do_end_point_detection = do_end_point_detection
self.window_size_ms = window_size_ms
self.sil_to_speech_time_thres = sil_to_speech_time_thres
self.speech_to_sil_time_thres = speech_to_sil_time_thres
self.speech_2_noise_ratio = speech_2_noise_ratio
self.do_extend = do_extend
self.lookback_time_start_point = lookback_time_start_point
self.lookahead_time_end_point = lookahead_time_end_point
self.max_single_segment_time = max_single_segment_time
self.nn_eval_block_size = nn_eval_block_size
self.dcd_block_size = dcd_block_size
self.snr_thres = snr_thres
self.noise_frame_num_used_for_snr = noise_frame_num_used_for_snr
self.decibel_thres = decibel_thres
self.speech_noise_thres = speech_noise_thres
self.fe_prior_thres = fe_prior_thres
self.silence_pdf_num = silence_pdf_num
self.sil_pdf_ids = sil_pdf_ids
self.speech_noise_thresh_low = speech_noise_thresh_low
self.speech_noise_thresh_high = speech_noise_thresh_high
self.output_frame_probs = output_frame_probs
self.frame_in_ms = frame_in_ms
self.frame_length_ms = frame_length_ms
class E2EVadSpeechBufWithDoa(object):
def __init__(self):
self.start_ms = 0
self.end_ms = 0
self.buffer = []
self.contain_seg_start_point = False
self.contain_seg_end_point = False
self.doa = 0
def reset(self):
self.start_ms = 0
self.end_ms = 0
self.buffer = []
self.contain_seg_start_point = False
self.contain_seg_end_point = False
self.doa = 0
class E2EVadFrameProb(object):
def __init__(self):
self.noise_prob = 0.0
self.speech_prob = 0.0
self.score = 0.0
self.frame_id = 0
self.frm_state = 0
class WindowDetector(object):
def __init__(
self,
window_size_ms: int,
sil_to_speech_time: int,
speech_to_sil_time: int,
frame_size_ms: int,
):
self.window_size_ms = window_size_ms
self.sil_to_speech_time = sil_to_speech_time
self.speech_to_sil_time = speech_to_sil_time
self.frame_size_ms = frame_size_ms
self.win_size_frame = int(window_size_ms / frame_size_ms)
self.win_sum = 0
self.win_state = [0] * self.win_size_frame # 初始化窗
self.cur_win_pos = 0
self.pre_frame_state = FrameState.kFrameStateSil
self.cur_frame_state = FrameState.kFrameStateSil
self.sil_to_speech_frmcnt_thres = int(sil_to_speech_time / frame_size_ms)
self.speech_to_sil_frmcnt_thres = int(speech_to_sil_time / frame_size_ms)
self.voice_last_frame_count = 0
self.noise_last_frame_count = 0
self.hydre_frame_count = 0
def reset(self) -> None:
self.cur_win_pos = 0
self.win_sum = 0
self.win_state = [0] * self.win_size_frame
self.pre_frame_state = FrameState.kFrameStateSil
self.cur_frame_state = FrameState.kFrameStateSil
self.voice_last_frame_count = 0
self.noise_last_frame_count = 0
self.hydre_frame_count = 0
def get_win_size(self) -> int:
return int(self.win_size_frame)
def detect_one_frame(
self, frameState: FrameState, frame_count: int
) -> AudioChangeState:
cur_frame_state = FrameState.kFrameStateSil
if frameState == FrameState.kFrameStateSpeech:
cur_frame_state = 1
elif frameState == FrameState.kFrameStateSil:
cur_frame_state = 0
else:
return AudioChangeState.kChangeStateInvalid
self.win_sum -= self.win_state[self.cur_win_pos]
self.win_sum += cur_frame_state
self.win_state[self.cur_win_pos] = cur_frame_state
self.cur_win_pos = (self.cur_win_pos + 1) % self.win_size_frame
if (
self.pre_frame_state == FrameState.kFrameStateSil
and self.win_sum >= self.sil_to_speech_frmcnt_thres
):
self.pre_frame_state = FrameState.kFrameStateSpeech
return AudioChangeState.kChangeStateSil2Speech
if (
self.pre_frame_state == FrameState.kFrameStateSpeech
and self.win_sum <= self.speech_to_sil_frmcnt_thres
):
self.pre_frame_state = FrameState.kFrameStateSil
return AudioChangeState.kChangeStateSpeech2Sil
if self.pre_frame_state == FrameState.kFrameStateSil:
return AudioChangeState.kChangeStateSil2Sil
if self.pre_frame_state == FrameState.kFrameStateSpeech:
return AudioChangeState.kChangeStateSpeech2Speech
return AudioChangeState.kChangeStateInvalid
def frame_size_ms(self) -> int:
return int(self.frame_size_ms)
class E2EVadModel:
def __init__(self, config, vad_post_args: Dict[str, Any], root_dir: Path):
super(E2EVadModel, self).__init__()
self.vad_opts = VADXOptions(**vad_post_args)
self.windows_detector = WindowDetector(
self.vad_opts.window_size_ms,
self.vad_opts.sil_to_speech_time_thres,
self.vad_opts.speech_to_sil_time_thres,
self.vad_opts.frame_in_ms,
)
self.model = VadOrtInferRuntimeSession(config, root_dir)
# init variables
self.is_final = False
self.data_buf_start_frame = 0
self.frm_cnt = 0
self.latest_confirmed_speech_frame = 0
self.lastest_confirmed_silence_frame = -1
self.continous_silence_frame_count = 0
self.vad_state_machine = VadStateMachine.kVadInStateStartPointNotDetected
self.confirmed_start_frame = -1
self.confirmed_end_frame = -1
self.number_end_time_detected = 0
self.sil_frame = 0
self.sil_pdf_ids = self.vad_opts.sil_pdf_ids
self.noise_average_decibel = -100.0
self.pre_end_silence_detected = False
self.next_seg = True
self.output_data_buf = []
self.output_data_buf_offset = 0
self.frame_probs = []
self.max_end_sil_frame_cnt_thresh = (
self.vad_opts.max_end_silence_time - self.vad_opts.speech_to_sil_time_thres
)
self.speech_noise_thres = self.vad_opts.speech_noise_thres
self.scores = None
self.max_time_out = False
self.decibel = []
self.data_buf_size = 0
self.data_buf_all_size = 0
self.waveform = None
self.reset_detection()
def all_reset_detection(self):
self.is_final = False
self.data_buf_start_frame = 0
self.frm_cnt = 0
self.latest_confirmed_speech_frame = 0
self.lastest_confirmed_silence_frame = -1
self.continous_silence_frame_count = 0
self.vad_state_machine = VadStateMachine.kVadInStateStartPointNotDetected
self.confirmed_start_frame = -1
self.confirmed_end_frame = -1
self.number_end_time_detected = 0
self.sil_frame = 0
self.sil_pdf_ids = self.vad_opts.sil_pdf_ids
self.noise_average_decibel = -100.0
self.pre_end_silence_detected = False
self.next_seg = True
self.output_data_buf = []
self.output_data_buf_offset = 0
self.frame_probs = []
self.max_end_sil_frame_cnt_thresh = (
self.vad_opts.max_end_silence_time - self.vad_opts.speech_to_sil_time_thres
)
self.speech_noise_thres = self.vad_opts.speech_noise_thres
self.scores = None
self.max_time_out = False
self.decibel = []
self.data_buf = 0
self.data_buf_all = 0
self.waveform = None
self.reset_detection()
def reset_detection(self):
self.continous_silence_frame_count = 0
self.latest_confirmed_speech_frame = 0
self.lastest_confirmed_silence_frame = -1
self.confirmed_start_frame = -1
self.confirmed_end_frame = -1
self.vad_state_machine = VadStateMachine.kVadInStateStartPointNotDetected
self.windows_detector.reset()
self.sil_frame = 0
self.frame_probs = []
def compute_decibel(self) -> None:
frame_sample_length = int(
self.vad_opts.frame_length_ms * self.vad_opts.sample_rate / 1000
)
frame_shift_length = int(
self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000
)
if self.data_buf_all_size == 0:
self.data_buf_all_size = len(self.waveform[0])
self.data_buf_size = self.data_buf_all_size
else:
self.data_buf_all_size += len(self.waveform[0])
for offset in range(
0, self.waveform.shape[1] - frame_sample_length + 1, frame_shift_length
):
self.decibel.append(
10
* np.log10(
np.square(
self.waveform[0][offset : offset + frame_sample_length]
).sum()
+ 1e-6
)
)
def compute_scores(self, feats: np.ndarray) -> None:
scores = self.model(feats)
self.vad_opts.nn_eval_block_size = scores[0].shape[1]
self.frm_cnt += scores[0].shape[1] # count total frames
if isinstance(feats, list):
# return B * T * D
feats = feats[0]
assert (
scores[0].shape[1] == feats.shape[1]
), "The shape between feats and scores does not match"
if self.scores is None:
self.scores = scores[0] # the first calculation
else:
self.scores = np.concatenate((self.scores, scores[0]), axis=1)
return scores[1:]
def pop_data_buf_till_frame(self, frame_idx: int) -> None: # need check again
while self.data_buf_start_frame < frame_idx:
if self.data_buf_size >= int(
self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000
):
self.data_buf_start_frame += 1
self.data_buf_size = (
self.data_buf_all_size
- self.data_buf_start_frame
* int(self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000)
)
def pop_data_to_output_buf(
self,
start_frm: int,
frm_cnt: int,
first_frm_is_start_point: bool,
last_frm_is_end_point: bool,
end_point_is_sent_end: bool,
) -> None:
self.pop_data_buf_till_frame(start_frm)
expected_sample_number = int(
frm_cnt * self.vad_opts.sample_rate * self.vad_opts.frame_in_ms / 1000
)
if last_frm_is_end_point:
extra_sample = max(
0,
int(
self.vad_opts.frame_length_ms * self.vad_opts.sample_rate / 1000
- self.vad_opts.sample_rate * self.vad_opts.frame_in_ms / 1000
),
)
expected_sample_number += int(extra_sample)
if end_point_is_sent_end:
expected_sample_number = max(expected_sample_number, self.data_buf_size)
if self.data_buf_size < expected_sample_number:
logging.error("error in calling pop data_buf\n")
if len(self.output_data_buf) == 0 or first_frm_is_start_point:
self.output_data_buf.append(E2EVadSpeechBufWithDoa())
self.output_data_buf[-1].reset()
self.output_data_buf[-1].start_ms = start_frm * self.vad_opts.frame_in_ms
self.output_data_buf[-1].end_ms = self.output_data_buf[-1].start_ms
self.output_data_buf[-1].doa = 0
cur_seg = self.output_data_buf[-1]
if cur_seg.end_ms != start_frm * self.vad_opts.frame_in_ms:
logging.error("warning\n")
out_pos = len(cur_seg.buffer) # cur_seg.buff现在没做任何操作
data_to_pop = 0
if end_point_is_sent_end:
data_to_pop = expected_sample_number
else:
data_to_pop = int(
frm_cnt * self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000
)
if data_to_pop > self.data_buf_size:
logging.error("VAD data_to_pop is bigger than self.data_buf.size()!!!\n")
data_to_pop = self.data_buf_size
expected_sample_number = self.data_buf_size
cur_seg.doa = 0
for sample_cpy_out in range(0, data_to_pop):
# cur_seg.buffer[out_pos ++] = data_buf_.back();
out_pos += 1
for sample_cpy_out in range(data_to_pop, expected_sample_number):
# cur_seg.buffer[out_pos++] = data_buf_.back()
out_pos += 1
if cur_seg.end_ms != start_frm * self.vad_opts.frame_in_ms:
logging.error("Something wrong with the VAD algorithm\n")
self.data_buf_start_frame += frm_cnt
cur_seg.end_ms = (start_frm + frm_cnt) * self.vad_opts.frame_in_ms
if first_frm_is_start_point:
cur_seg.contain_seg_start_point = True
if last_frm_is_end_point:
cur_seg.contain_seg_end_point = True
def on_silence_detected(self, valid_frame: int):
self.lastest_confirmed_silence_frame = valid_frame
if self.vad_state_machine == VadStateMachine.kVadInStateStartPointNotDetected:
self.pop_data_buf_till_frame(valid_frame)
# silence_detected_callback_
# pass
def on_voice_detected(self, valid_frame: int) -> None:
self.latest_confirmed_speech_frame = valid_frame
self.pop_data_to_output_buf(valid_frame, 1, False, False, False)
def on_voice_start(self, start_frame: int, fake_result: bool = False) -> None:
if self.vad_opts.do_start_point_detection:
pass
if self.confirmed_start_frame != -1:
logging.error("not reset vad properly\n")
else:
self.confirmed_start_frame = start_frame
if (
not fake_result
and self.vad_state_machine
== VadStateMachine.kVadInStateStartPointNotDetected
):
self.pop_data_to_output_buf(
self.confirmed_start_frame, 1, True, False, False
)
def on_voice_end(
self, end_frame: int, fake_result: bool, is_last_frame: bool
) -> None:
for t in range(self.latest_confirmed_speech_frame + 1, end_frame):
self.on_voice_detected(t)
if self.vad_opts.do_end_point_detection:
pass
if self.confirmed_end_frame != -1:
logging.error("not reset vad properly\n")
else:
self.confirmed_end_frame = end_frame
if not fake_result:
self.sil_frame = 0
self.pop_data_to_output_buf(
self.confirmed_end_frame, 1, False, True, is_last_frame
)
self.number_end_time_detected += 1
def maybe_on_voice_end_last_frame(
self, is_final_frame: bool, cur_frm_idx: int
) -> None:
if is_final_frame:
self.on_voice_end(cur_frm_idx, False, True)
self.vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
def get_latency(self) -> int:
return int(self.latency_frm_num_at_start_point() * self.vad_opts.frame_in_ms)
def latency_frm_num_at_start_point(self) -> int:
vad_latency = self.windows_detector.get_win_size()
if self.vad_opts.do_extend:
vad_latency += int(
self.vad_opts.lookback_time_start_point / self.vad_opts.frame_in_ms
)
return vad_latency
def get_frame_state(self, t: int) -> FrameState:
frame_state = FrameState.kFrameStateInvalid
cur_decibel = self.decibel[t]
cur_snr = cur_decibel - self.noise_average_decibel
# for each frame, calc log posterior probability of each state
if cur_decibel < self.vad_opts.decibel_thres:
frame_state = FrameState.kFrameStateSil
self.detect_one_frame(frame_state, t, False)
return frame_state
sum_score = 0.0
noise_prob = 0.0
assert len(self.sil_pdf_ids) == self.vad_opts.silence_pdf_num
if len(self.sil_pdf_ids) > 0:
assert len(self.scores) == 1 # 只支持batch_size = 1的测试
sil_pdf_scores = [
self.scores[0][t][sil_pdf_id] for sil_pdf_id in self.sil_pdf_ids
]
sum_score = sum(sil_pdf_scores)
noise_prob = math.log(sum_score) * self.vad_opts.speech_2_noise_ratio
total_score = 1.0
sum_score = total_score - sum_score
speech_prob = math.log(sum_score)
if self.vad_opts.output_frame_probs:
frame_prob = E2EVadFrameProb()
frame_prob.noise_prob = noise_prob
frame_prob.speech_prob = speech_prob
frame_prob.score = sum_score
frame_prob.frame_id = t
self.frame_probs.append(frame_prob)
if math.exp(speech_prob) >= math.exp(noise_prob) + self.speech_noise_thres:
if (
cur_snr >= self.vad_opts.snr_thres
and cur_decibel >= self.vad_opts.decibel_thres
):
frame_state = FrameState.kFrameStateSpeech
else:
frame_state = FrameState.kFrameStateSil
else:
frame_state = FrameState.kFrameStateSil
if self.noise_average_decibel < -99.9:
self.noise_average_decibel = cur_decibel
else:
self.noise_average_decibel = (
cur_decibel
+ self.noise_average_decibel
* (self.vad_opts.noise_frame_num_used_for_snr - 1)
) / self.vad_opts.noise_frame_num_used_for_snr
return frame_state
def infer_offline(
self,
feats: np.ndarray,
waveform: np.ndarray,
in_cache: Dict[str, np.ndarray] = dict(),
is_final: bool = False,
) -> Tuple[List[List[List[int]]], Dict[str, np.ndarray]]:
self.waveform = waveform
self.compute_decibel()
self.compute_scores(feats)
if not is_final:
self.detect_common_frames()
else:
self.detect_last_frames()
segments = []
for batch_num in range(0, feats.shape[0]): # only support batch_size = 1 now
segment_batch = []
if len(self.output_data_buf) > 0:
for i in range(self.output_data_buf_offset, len(self.output_data_buf)):
if (
not self.output_data_buf[i].contain_seg_start_point
or not self.output_data_buf[i].contain_seg_end_point
):
continue
segment = [
self.output_data_buf[i].start_ms,
self.output_data_buf[i].end_ms,
]
segment_batch.append(segment)
self.output_data_buf_offset += 1 # need update this parameter
if segment_batch:
segments.append(segment_batch)
if is_final:
# reset class variables and clear the dict for the next query
self.all_reset_detection()
return segments, in_cache
def infer_online(
self,
feats: np.ndarray,
waveform: np.ndarray,
in_cache: list = None,
is_final: bool = False,
max_end_sil: int = 800,
) -> Tuple[List[List[List[int]]], Dict[str, np.ndarray]]:
feats = [feats]
if in_cache is None:
in_cache = []
self.max_end_sil_frame_cnt_thresh = (
max_end_sil - self.vad_opts.speech_to_sil_time_thres
)
self.waveform = waveform # compute decibel for each frame
feats.extend(in_cache)
in_cache = self.compute_scores(feats)
self.compute_decibel()
if is_final:
self.detect_last_frames()
else:
self.detect_common_frames()
segments = []
# only support batch_size = 1 now
for batch_num in range(0, feats[0].shape[0]):
if len(self.output_data_buf) > 0:
for i in range(self.output_data_buf_offset, len(self.output_data_buf)):
if not self.output_data_buf[i].contain_seg_start_point:
continue
if (
not self.next_seg
and not self.output_data_buf[i].contain_seg_end_point
):
continue
start_ms = self.output_data_buf[i].start_ms if self.next_seg else -1
if self.output_data_buf[i].contain_seg_end_point:
end_ms = self.output_data_buf[i].end_ms
self.next_seg = True
self.output_data_buf_offset += 1
else:
end_ms = -1
self.next_seg = False
segments.append([start_ms, end_ms])
return segments, in_cache
def get_frames_state(
self,
feats: np.ndarray,
waveform: np.ndarray,
in_cache: list = None,
is_final: bool = False,
max_end_sil: int = 800,
):
feats = [feats]
states = []
if in_cache is None:
in_cache = []
self.max_end_sil_frame_cnt_thresh = (
max_end_sil - self.vad_opts.speech_to_sil_time_thres
)
self.waveform = waveform # compute decibel for each frame
feats.extend(in_cache)
in_cache = self.compute_scores(feats)
self.compute_decibel()
if self.vad_state_machine == VadStateMachine.kVadInStateEndPointDetected:
return states
for i in range(self.vad_opts.nn_eval_block_size - 1, -1, -1):
frame_state = FrameState.kFrameStateInvalid
frame_state = self.get_frame_state(self.frm_cnt - 1 - i)
states.append(frame_state)
if i == 0 and is_final:
logger.info("last frame detected")
self.detect_one_frame(frame_state, self.frm_cnt - 1, True)
else:
self.detect_one_frame(frame_state, self.frm_cnt - 1 - i, False)
return states
def detect_common_frames(self) -> int:
if self.vad_state_machine == VadStateMachine.kVadInStateEndPointDetected:
return 0
for i in range(self.vad_opts.nn_eval_block_size - 1, -1, -1):
frame_state = FrameState.kFrameStateInvalid
frame_state = self.get_frame_state(self.frm_cnt - 1 - i)
# print(f"cur frame: {self.frm_cnt - 1 - i}, state is {frame_state}")
self.detect_one_frame(frame_state, self.frm_cnt - 1 - i, False)
return 0
def detect_last_frames(self) -> int:
if self.vad_state_machine == VadStateMachine.kVadInStateEndPointDetected:
return 0
for i in range(self.vad_opts.nn_eval_block_size - 1, -1, -1):
frame_state = FrameState.kFrameStateInvalid
frame_state = self.get_frame_state(self.frm_cnt - 1 - i)
if i != 0:
self.detect_one_frame(frame_state, self.frm_cnt - 1 - i, False)
else:
self.detect_one_frame(frame_state, self.frm_cnt - 1, True)
return 0
def detect_one_frame(
self, cur_frm_state: FrameState, cur_frm_idx: int, is_final_frame: bool
) -> None:
tmp_cur_frm_state = FrameState.kFrameStateInvalid
if cur_frm_state == FrameState.kFrameStateSpeech:
if math.fabs(1.0) > float(self.vad_opts.fe_prior_thres):
tmp_cur_frm_state = FrameState.kFrameStateSpeech
else:
tmp_cur_frm_state = FrameState.kFrameStateSil
elif cur_frm_state == FrameState.kFrameStateSil:
tmp_cur_frm_state = FrameState.kFrameStateSil
state_change = self.windows_detector.detect_one_frame(
tmp_cur_frm_state, cur_frm_idx
)
frm_shift_in_ms = self.vad_opts.frame_in_ms
if AudioChangeState.kChangeStateSil2Speech == state_change:
self.continous_silence_frame_count = 0
self.pre_end_silence_detected = False
if (
self.vad_state_machine
== VadStateMachine.kVadInStateStartPointNotDetected
):
start_frame = max(
self.data_buf_start_frame,
cur_frm_idx - self.latency_frm_num_at_start_point(),
)
self.on_voice_start(start_frame)
self.vad_state_machine = VadStateMachine.kVadInStateInSpeechSegment
for t in range(start_frame + 1, cur_frm_idx + 1):
self.on_voice_detected(t)
elif self.vad_state_machine == VadStateMachine.kVadInStateInSpeechSegment:
for t in range(self.latest_confirmed_speech_frame + 1, cur_frm_idx):
self.on_voice_detected(t)
if (
cur_frm_idx - self.confirmed_start_frame + 1
> self.vad_opts.max_single_segment_time / frm_shift_in_ms
):
self.on_voice_end(cur_frm_idx, False, False)
self.vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
elif not is_final_frame:
self.on_voice_detected(cur_frm_idx)
else:
self.maybe_on_voice_end_last_frame(is_final_frame, cur_frm_idx)
else:
pass
elif AudioChangeState.kChangeStateSpeech2Sil == state_change:
self.continous_silence_frame_count = 0
if (
self.vad_state_machine
== VadStateMachine.kVadInStateStartPointNotDetected
):
pass
elif self.vad_state_machine == VadStateMachine.kVadInStateInSpeechSegment:
if (
cur_frm_idx - self.confirmed_start_frame + 1
> self.vad_opts.max_single_segment_time / frm_shift_in_ms
):
self.on_voice_end(cur_frm_idx, False, False)
self.vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
elif not is_final_frame:
self.on_voice_detected(cur_frm_idx)
else:
self.maybe_on_voice_end_last_frame(is_final_frame, cur_frm_idx)
else:
pass
elif AudioChangeState.kChangeStateSpeech2Speech == state_change:
self.continous_silence_frame_count = 0
if self.vad_state_machine == VadStateMachine.kVadInStateInSpeechSegment:
if (
cur_frm_idx - self.confirmed_start_frame + 1
> self.vad_opts.max_single_segment_time / frm_shift_in_ms
):
self.max_time_out = True
self.on_voice_end(cur_frm_idx, False, False)
self.vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
elif not is_final_frame:
self.on_voice_detected(cur_frm_idx)
else:
self.maybe_on_voice_end_last_frame(is_final_frame, cur_frm_idx)
else:
pass
elif AudioChangeState.kChangeStateSil2Sil == state_change:
self.continous_silence_frame_count += 1
if (
self.vad_state_machine
== VadStateMachine.kVadInStateStartPointNotDetected
):
# silence timeout, return zero length decision
if (
(
self.vad_opts.detect_mode
== VadDetectMode.kVadSingleUtteranceDetectMode.value
)
and (
self.continous_silence_frame_count * frm_shift_in_ms
> self.vad_opts.max_start_silence_time
)
) or (is_final_frame and self.number_end_time_detected == 0):
for t in range(
self.lastest_confirmed_silence_frame + 1, cur_frm_idx
):
self.on_silence_detected(t)
self.on_voice_start(0, True)
self.on_voice_end(0, True, False)
self.vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
else:
if cur_frm_idx >= self.latency_frm_num_at_start_point():
self.on_silence_detected(
cur_frm_idx - self.latency_frm_num_at_start_point()
)
elif self.vad_state_machine == VadStateMachine.kVadInStateInSpeechSegment:
if (
self.continous_silence_frame_count * frm_shift_in_ms
>= self.max_end_sil_frame_cnt_thresh
):
lookback_frame = int(
self.max_end_sil_frame_cnt_thresh / frm_shift_in_ms
)
if self.vad_opts.do_extend:
lookback_frame -= int(
self.vad_opts.lookahead_time_end_point / frm_shift_in_ms
)
lookback_frame -= 1
lookback_frame = max(0, lookback_frame)
self.on_voice_end(cur_frm_idx - lookback_frame, False, False)
self.vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
elif (
cur_frm_idx - self.confirmed_start_frame + 1
> self.vad_opts.max_single_segment_time / frm_shift_in_ms
):
self.on_voice_end(cur_frm_idx, False, False)
self.vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
elif self.vad_opts.do_extend and not is_final_frame:
if self.continous_silence_frame_count <= int(
self.vad_opts.lookahead_time_end_point / frm_shift_in_ms
):
self.on_voice_detected(cur_frm_idx)
else:
self.maybe_on_voice_end_last_frame(is_final_frame, cur_frm_idx)
else:
pass
if (
self.vad_state_machine == VadStateMachine.kVadInStateEndPointDetected
and self.vad_opts.detect_mode
== VadDetectMode.kVadMutipleUtteranceDetectMode.value
):
self.reset_detection()
|