Spaces:
Runtime error
Runtime error
File size: 7,024 Bytes
890de26 ad7940b 890de26 f47ff49 890de26 ad7940b 890de26 f47ff49 1fa27cc f47ff49 890de26 3744361 890de26 3744361 890de26 ceac5f8 5b8e5cd ceac5f8 5b8e5cd 10d71a1 890de26 ad7940b 890de26 ad7940b 890de26 2d21960 890de26 5e7226b 5cbdda6 f47ff49 890de26 5e7226b 890de26 5cbdda6 3744361 e32152a f47ff49 ad7940b 890de26 ad7940b 2ea94f9 ad7940b 132a4e6 ad7940b 132a4e6 ad7940b 890de26 ad7940b 890de26 ad7940b 890de26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
import os
import gradio as gr
import numpy as np
import soundfile as sf
import torchaudio
from speechbrain.pretrained.interfaces import foreign_class
from app_utils import preprocess_video_and_rank,video_score
from authors import AUTHORS
# Importing necessary components for the Gradio app
from description import DESCRIPTION_DYNAMIC # , DESCRIPTION_STATIC
# import scipy.io.wavfile as wav
from paraformer import AudioReader, CttPunctuator, FSMNVad, ParaformerOffline
from gradio_client import Client
client = Client("Liusuthu/TextDepression")
os.environ["no_proxy"] = "localhost,127.0.0.1,::1"
###########################语音部分######################################
classifier = foreign_class(
source="pretrained_models/local-speechbrain/emotion-recognition-wav2vec2-IEMOCAP", # ".\\emotion-recognition-wav2vec2-IEMOCAP"
pymodule_file="custom_interface.py",
classname="CustomEncoderWav2vec2Classifier",
savedir="pretrained_models/local-speechbrain/emotion-recognition-wav2vec2-IEMOCAP",
)
ASR_model = ParaformerOffline()
vad = FSMNVad()
punc = CttPunctuator()
def text_api(text:str):
result = client.predict(
text, # str in '输入文字' Textbox component
api_name="/predict",
)
return result
def classify_continuous(audio):
print(type(audio))
print(audio)
sample_rate, signal = audio # 这是语音的输入
signal = signal.astype(np.float32)
signal /= np.max(np.abs(signal))
sf.write("data/a.wav", signal, sample_rate)
signal, sample_rate = torchaudio.load("data/a.wav")
signal1 = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(
signal
)
torchaudio.save("data/out.wav", signal1, 16000, encoding="PCM_S", bits_per_sample=16)
Audio = "data/out.wav"
speech, sample_rate = AudioReader.read_wav_file(Audio)
if signal == "none":
return "none", "none", "haha"
else:
segments = vad.segments_offline(speech)
text_results = ""
for part in segments:
_result = ASR_model.infer_offline(
speech[part[0] * 16 : part[1] * 16], hot_words="任意热词 空格分开"
)
text_results += punc.punctuate(_result)[0]
out_prob, score, index, text_lab = classifier.classify_batch(signal1)
print(type(out_prob.squeeze(0).numpy()))
print(out_prob.squeeze(0).numpy())
print(type(text_lab[-1]))
print(text_lab[-1])
return text_results, out_prob.squeeze(0).numpy(), text_lab[-1], Audio
#########################################视频部分###################################
def clear_dynamic_info():
return (
gr.Video(value=None),
gr.Plot(value=None),
gr.Textbox(""),
)
def clear_video():
return (
gr.Video(value=None),
gr.Number(value=None),
gr.Number(value=None),
gr.Textbox("")
)
##################################设置各自的app类####################
with gr.Blocks(css="app.css") as video:
with gr.Tab("Dynamic App"):
gr.Markdown(value=DESCRIPTION_DYNAMIC)
with gr.Row():
with gr.Column(scale=2):
input_video = gr.Video(
sources=["webcam", "upload"], elem_classes="video1", format='mp4'
)
with gr.Row():
clear_btn_dynamic = gr.Button(
value="Clear", interactive=True, scale=1
)
# submit_dynamic = gr.Button(
# value="Submit", interactive=True, scale=1, elem_classes="submit"
# )
submit_and_rank = gr.Button(
value="Score", interactive=True, scale=1, elem_classes="submit"
)
with gr.Column(scale=2, elem_classes="dl4"):
with gr.Row():
output_score = gr.Textbox(label="scores")
output_statistics = gr.Plot(
label="Statistics of emotions", elem_classes="stat"
)
output_audio=gr.Audio(interactive=False)
audio_test_button=gr.Button("分析语音")
out1=gr.Textbox(label="语音分析结果")
out2=gr.Textbox(label="音频情感识别1")
out3=gr.Textbox(label="音频情感识别2")
text_test_button=gr.Button("分析文本")
text_result=gr.Textbox(interactive=False)
gr.Examples(
[
"videos/video1.mp4",
"videos/video2.mp4",
"videos/sample.webm",
"videos/cnm.mp4",
],
[input_video],
)
with gr.Tab("Authors"):
gr.Markdown(value=AUTHORS)
clear_btn_dynamic.click(
fn=clear_dynamic_info,
inputs=[],
outputs=[
input_video,
output_statistics,
output_score,
],
queue=True,
)
submit_and_rank.click(
fn=preprocess_video_and_rank,
inputs=input_video,
outputs=[
output_statistics,
output_score,
output_audio,
],
)
audio_test_button.click(
fn=classify_continuous,
inputs=output_audio,
outputs=[out1,out2,out3]
)
text_test_button.click(
fn=text_api,
inputs=out1,
outputs=text_result,
)
####################################
speech = gr.Interface(
classify_continuous,
gr.Audio(sources=["microphone"]),
[
gr.Text(label="语音识别结果"),
gr.Text(label="音频情感识别1"),
gr.Text(label="音频情感识别2"),
],
)
############################################################
with gr.Blocks() as video_score:
with gr.Row():
with gr.Column(scale=2):
input_video = gr.Video(
sources=["upload"], elem_classes="video1", format='mp4'
)
with gr.Row():
clear_1 = gr.Button(
value="Clear", interactive=True, scale=1
)
submit_1 = gr.Button(
value="Score", interactive=True, scale=1, elem_classes="submit"
)
with gr.Column(scale=2):
with gr.Row():
score1=gr.Number(interactive=False,label="score1")
score2=gr.Number(interactive=False,label="score2")
result3=gr.Textbox(interactive=False)
clear_1.click(
fn=clear_video,
inputs=[],
outputs=[input_video,score1,score2,result3]
)
submit_1.click(
fn=video_score,
inputs=[input_video],
outputs=[score1,score2,result3]
)
with gr.Blocks() as app:
with gr.Tab("语音"):
speech.render()
with gr.Tab("视频"):
video.render()
with gr.Tab("视频集成打分"):
video_score.render()
app.launch()
|