Spaces:
Runtime error
Runtime error
File size: 5,390 Bytes
890de26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
"""
File: model.py
Author: Elena Ryumina and Dmitry Ryumin
Description: This module provides model architectures.
License: MIT License
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, in_channels, out_channels, i_downsample=None, stride=1):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, padding=0, bias=False)
self.batch_norm1 = nn.BatchNorm2d(out_channels, eps=0.001, momentum=0.99)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding='same', bias=False)
self.batch_norm2 = nn.BatchNorm2d(out_channels, eps=0.001, momentum=0.99)
self.conv3 = nn.Conv2d(out_channels, out_channels*self.expansion, kernel_size=1, stride=1, padding=0, bias=False)
self.batch_norm3 = nn.BatchNorm2d(out_channels*self.expansion, eps=0.001, momentum=0.99)
self.i_downsample = i_downsample
self.stride = stride
self.relu = nn.ReLU()
def forward(self, x):
identity = x.clone()
x = self.relu(self.batch_norm1(self.conv1(x)))
x = self.relu(self.batch_norm2(self.conv2(x)))
x = self.conv3(x)
x = self.batch_norm3(x)
#downsample if needed
if self.i_downsample is not None:
identity = self.i_downsample(identity)
#add identity
x+=identity
x=self.relu(x)
return x
class Conv2dSame(torch.nn.Conv2d):
def calc_same_pad(self, i: int, k: int, s: int, d: int) -> int:
return max((math.ceil(i / s) - 1) * s + (k - 1) * d + 1 - i, 0)
def forward(self, x: torch.Tensor) -> torch.Tensor:
ih, iw = x.size()[-2:]
pad_h = self.calc_same_pad(i=ih, k=self.kernel_size[0], s=self.stride[0], d=self.dilation[0])
pad_w = self.calc_same_pad(i=iw, k=self.kernel_size[1], s=self.stride[1], d=self.dilation[1])
if pad_h > 0 or pad_w > 0:
x = F.pad(
x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2]
)
return F.conv2d(
x,
self.weight,
self.bias,
self.stride,
self.padding,
self.dilation,
self.groups,
)
class ResNet(nn.Module):
def __init__(self, ResBlock, layer_list, num_classes, num_channels=3):
super(ResNet, self).__init__()
self.in_channels = 64
self.conv_layer_s2_same = Conv2dSame(num_channels, 64, 7, stride=2, groups=1, bias=False)
self.batch_norm1 = nn.BatchNorm2d(64, eps=0.001, momentum=0.99)
self.relu = nn.ReLU()
self.max_pool = nn.MaxPool2d(kernel_size = 3, stride=2)
self.layer1 = self._make_layer(ResBlock, layer_list[0], planes=64, stride=1)
self.layer2 = self._make_layer(ResBlock, layer_list[1], planes=128, stride=2)
self.layer3 = self._make_layer(ResBlock, layer_list[2], planes=256, stride=2)
self.layer4 = self._make_layer(ResBlock, layer_list[3], planes=512, stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((1,1))
self.fc1 = nn.Linear(512*ResBlock.expansion, 512)
self.relu1 = nn.ReLU()
self.fc2 = nn.Linear(512, num_classes)
def extract_features(self, x):
x = self.relu(self.batch_norm1(self.conv_layer_s2_same(x)))
x = self.max_pool(x)
# print(x.shape)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.reshape(x.shape[0], -1)
x = self.fc1(x)
return x
def forward(self, x):
x = self.extract_features(x)
x = self.relu1(x)
x = self.fc2(x)
return x
def _make_layer(self, ResBlock, blocks, planes, stride=1):
ii_downsample = None
layers = []
if stride != 1 or self.in_channels != planes*ResBlock.expansion:
ii_downsample = nn.Sequential(
nn.Conv2d(self.in_channels, planes*ResBlock.expansion, kernel_size=1, stride=stride, bias=False, padding=0),
nn.BatchNorm2d(planes*ResBlock.expansion, eps=0.001, momentum=0.99)
)
layers.append(ResBlock(self.in_channels, planes, i_downsample=ii_downsample, stride=stride))
self.in_channels = planes*ResBlock.expansion
for i in range(blocks-1):
layers.append(ResBlock(self.in_channels, planes))
return nn.Sequential(*layers)
def ResNet50(num_classes, channels=3):
return ResNet(Bottleneck, [3,4,6,3], num_classes, channels)
class LSTMPyTorch(nn.Module):
def __init__(self):
super(LSTMPyTorch, self).__init__()
self.lstm1 = nn.LSTM(input_size=512, hidden_size=512, batch_first=True, bidirectional=False)
self.lstm2 = nn.LSTM(input_size=512, hidden_size=256, batch_first=True, bidirectional=False)
self.fc = nn.Linear(256, 7)
self.softmax = nn.Softmax(dim=1)
def forward(self, x):
x, _ = self.lstm1(x)
x, _ = self.lstm2(x)
x = self.fc(x[:, -1, :])
x = self.softmax(x)
return x |