File size: 5,390 Bytes
890de26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
"""
File: model.py
Author: Elena Ryumina and Dmitry Ryumin
Description: This module provides model architectures.
License: MIT License
"""

import torch
import torch.nn as  nn
import torch.nn.functional as F
import math

class Bottleneck(nn.Module):
    expansion = 4
    def __init__(self, in_channels, out_channels, i_downsample=None, stride=1):
        super(Bottleneck, self).__init__()
        
        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, padding=0, bias=False)
        self.batch_norm1 = nn.BatchNorm2d(out_channels, eps=0.001, momentum=0.99)
        
        self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding='same', bias=False)
        self.batch_norm2 = nn.BatchNorm2d(out_channels, eps=0.001, momentum=0.99)
        
        self.conv3 = nn.Conv2d(out_channels, out_channels*self.expansion, kernel_size=1, stride=1, padding=0, bias=False)
        self.batch_norm3 = nn.BatchNorm2d(out_channels*self.expansion, eps=0.001, momentum=0.99)
        
        self.i_downsample = i_downsample
        self.stride = stride
        self.relu = nn.ReLU()
        
    def forward(self, x):
        identity = x.clone()
        x = self.relu(self.batch_norm1(self.conv1(x)))
        
        x = self.relu(self.batch_norm2(self.conv2(x)))
        
        x = self.conv3(x)
        x = self.batch_norm3(x)
        
        #downsample if needed
        if self.i_downsample is not None:
            identity = self.i_downsample(identity)
        #add identity
        x+=identity
        x=self.relu(x)
        
        return x

class Conv2dSame(torch.nn.Conv2d):

    def calc_same_pad(self, i: int, k: int, s: int, d: int) -> int:
        return max((math.ceil(i / s) - 1) * s + (k - 1) * d + 1 - i, 0)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        ih, iw = x.size()[-2:]

        pad_h = self.calc_same_pad(i=ih, k=self.kernel_size[0], s=self.stride[0], d=self.dilation[0])
        pad_w = self.calc_same_pad(i=iw, k=self.kernel_size[1], s=self.stride[1], d=self.dilation[1])

        if pad_h > 0 or pad_w > 0:
            x = F.pad(
                x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2]
            )
        return F.conv2d(
            x,
            self.weight,
            self.bias,
            self.stride,
            self.padding,
            self.dilation,
            self.groups,
        )

class ResNet(nn.Module):
    def __init__(self, ResBlock, layer_list, num_classes, num_channels=3):
        super(ResNet, self).__init__()
        self.in_channels = 64

        self.conv_layer_s2_same = Conv2dSame(num_channels, 64, 7, stride=2, groups=1, bias=False)
        self.batch_norm1 = nn.BatchNorm2d(64, eps=0.001, momentum=0.99)
        self.relu = nn.ReLU()
        self.max_pool = nn.MaxPool2d(kernel_size = 3, stride=2)
        
        self.layer1 = self._make_layer(ResBlock, layer_list[0], planes=64, stride=1)
        self.layer2 = self._make_layer(ResBlock, layer_list[1], planes=128, stride=2)
        self.layer3 = self._make_layer(ResBlock, layer_list[2], planes=256, stride=2)
        self.layer4 = self._make_layer(ResBlock, layer_list[3], planes=512, stride=2)
        
        self.avgpool = nn.AdaptiveAvgPool2d((1,1))
        self.fc1 = nn.Linear(512*ResBlock.expansion, 512)
        self.relu1 = nn.ReLU()
        self.fc2 = nn.Linear(512, num_classes)

    def extract_features(self, x):
        x = self.relu(self.batch_norm1(self.conv_layer_s2_same(x)))
        x = self.max_pool(x)
        # print(x.shape)
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        
        x = self.avgpool(x)
        x = x.reshape(x.shape[0], -1)
        x = self.fc1(x)
        return x
        
    def forward(self, x):
        x = self.extract_features(x)
        x = self.relu1(x)
        x = self.fc2(x)
        return x
        
    def _make_layer(self, ResBlock, blocks, planes, stride=1):
        ii_downsample = None
        layers = []
        
        if stride != 1 or self.in_channels != planes*ResBlock.expansion:
            ii_downsample = nn.Sequential(
                nn.Conv2d(self.in_channels, planes*ResBlock.expansion, kernel_size=1, stride=stride, bias=False, padding=0),
                nn.BatchNorm2d(planes*ResBlock.expansion, eps=0.001, momentum=0.99)
            )
            
        layers.append(ResBlock(self.in_channels, planes, i_downsample=ii_downsample, stride=stride))
        self.in_channels = planes*ResBlock.expansion
        
        for i in range(blocks-1):
            layers.append(ResBlock(self.in_channels, planes))
            
        return nn.Sequential(*layers)
        
def ResNet50(num_classes, channels=3):
    return ResNet(Bottleneck, [3,4,6,3], num_classes, channels)


class LSTMPyTorch(nn.Module):
    def __init__(self):
        super(LSTMPyTorch, self).__init__()
        
        self.lstm1 = nn.LSTM(input_size=512, hidden_size=512, batch_first=True, bidirectional=False)
        self.lstm2 = nn.LSTM(input_size=512, hidden_size=256, batch_first=True, bidirectional=False)
        self.fc = nn.Linear(256, 7)
        self.softmax = nn.Softmax(dim=1)

    def forward(self, x):
        x, _ = self.lstm1(x)
        x, _ = self.lstm2(x)        
        x = self.fc(x[:, -1, :])
        x = self.softmax(x)
        return x