File size: 13,603 Bytes
890de26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
# -*- coding:utf-8 -*-
# @FileName  :asr_all_in_one.py
# @Time      :2023/8/14 09:31
# @Author    :lovemefan
# @Email     :[email protected]
import time

import numpy as np

from paraformer.runtime.python.cttPunctuator import CttPunctuator
from paraformer.runtime.python.fsmnVadInfer import FSMNVadOnline
from paraformer.runtime.python.paraformerInfer import (ParaformerOffline,
                                                       ParaformerOnline)
from paraformer.runtime.python.svInfer import SpeakerVerificationInfer
from paraformer.runtime.python.utils.logger import logger

mode_available = ["offline", "file_transcription", "online", "2pass"]


class AsrAllInOne:
    def __init__(
        self,
        mode: str,
        *,
        speaker_verification=False,
        time_stamp=False,
        chunk_interval=10,
        sv_model_name="cam++",
        sv_threshold=0.6,
        sv_max_start_silence_time=3000,
        vad_speech_max_length=20000,
        vad_speech_noise_thresh_low=-0.1,
        vad_speech_noise_thresh_high=0.3,
        vad_speech_noise_thresh=0.6,
        hot_words="",
    ):
        """
        Args:
          mode:
          speaker_verification:
          time_stamp:
        """
        assert (
            mode in mode_available
        ), f"{mode} is not support, only {mode_available} is available"
        self.mode = mode
        self.speaker_verification = speaker_verification
        self.time_stamp = time_stamp
        self.start_frame = 0
        self.end_frame = 0
        self.vad_pre_idx = 0
        self.mode = mode
        self.chunk_interval = chunk_interval
        self.speech_start = False
        self.frames = []
        self.offset = 0
        self.hot_words = hot_words

        if mode == "offline":
            self.asr_offline = ParaformerOffline()
        elif mode == "online":
            self.asr_online = ParaformerOnline()
        elif mode == "2pass":
            self.asr_offline = ParaformerOffline()
            self.asr_online = ParaformerOnline()
            self.vad = FSMNVadOnline()
            self.vad.vad.vad_opts.max_single_segment_time = vad_speech_max_length
            self.vad.vad.vad_opts.max_start_silence_time = sv_max_start_silence_time
            self.vad.vad.vad_opts.speech_noise_thresh_low = vad_speech_noise_thresh_low
            self.vad.vad.vad_opts.speech_noise_thresh_high = (
                vad_speech_noise_thresh_high
            )
            self.vad.vad.vad_opts.speech_noise_thresh = vad_speech_noise_thresh
            self.punc = CttPunctuator(online=True)
            self.text_cache = ""

        elif mode == "file_transcription":
            self.asr_offline = ParaformerOffline()
            self.vad = FSMNVadOnline()
            self.vad.vad.vad_opts.speech_noise_thresh_low = vad_speech_noise_thresh_low
            self.vad.vad.vad_opts.speech_noise_thresh_high = (
                vad_speech_noise_thresh_high
            )
            self.vad.vad.vad_opts.speech_noise_thresh = vad_speech_noise_thresh
            self.vad.vad.vad_opts.max_single_segment_time = vad_speech_max_length
            self.vad.vad.vad_opts.max_start_silence_time = sv_max_start_silence_time
            self.punc = CttPunctuator(online=False)
        else:
            raise ValueError(f"Do not support mode: {mode}")

        if speaker_verification:
            self.sv = SpeakerVerificationInfer(
                model_name=sv_model_name, threshold=sv_threshold
            )

    def reset_asr(self):
        self.frames = []
        self.start_frame = 0
        self.end_frame = 0
        self.vad_pre_idx = 0
        self.vad.vad.all_reset_detection()

    def online(self, chunk: np.ndarray, is_final: bool = False):
        return self.asr_online.infer_online(chunk, is_final)

    def offline(self, audio_data: np.ndarray):
        return self.asr_offline.infer_offline(audio_data, hot_words=self.hot_words)

    def extract_endpoint_from_vad_result(self, segments_result):
        segments = []
        for _start, _end in segments_result:
            start = -1
            end = -1
            if _start != -1:
                start = _start
            if _end != -1:
                end = _end
            segments.append([start, end])
        return segments

    def one_sentence_asr(self, audio: np.ndarray):
        """asr offline + punc"""
        result = self.asr_offline.infer_offline(audio, hot_words=self.hot_words)
        result = self.punc.punctuate(result)[0]
        return result

    def file_transcript(self, audio: np.ndarray, step=9600):
        """
        asr offline + vad + punc
        Args:
            audio:
            step:

        Returns:

        """
        vad_pre_idx = 0
        speech_length = len(audio)
        sample_offset = 0
        for sample_offset in range(
            0, speech_length, min(step, speech_length - sample_offset)
        ):
            if sample_offset + step >= speech_length - 1:
                step = speech_length - sample_offset
                is_final = True
            else:
                is_final = False
            chunk = audio[sample_offset : sample_offset + step]
            vad_pre_idx += len(chunk)
            segments_result = self.vad.segments_online(chunk, is_final=is_final)
            start_frame = 0
            end_frame = 0
            result = {}
            for start, end in segments_result:
                if start != -1:
                    start_ms = start

                # paraformer offline inference
                if end != -1:
                    end_frame = end * 16
                    end_ms = end
                    data = np.array(audio[start_ms * 16 : end_frame])
                    time_start = time.time()
                    asr_offline_final = self.asr_offline.infer_offline(data)
                    logger.debug(
                        f"asr offline inference use {time.time() - time_start} s"
                    )
                    if self.speaker_verification:
                        time_start = time.time()
                        speaker_id = self.sv.recognize(data)
                        result["speaker_id"] = speaker_id
                        logger.debug(
                            f"asr offline inference use {time.time() - time_start} s"
                        )
                    self.speech_start = False
                    time_start = time.time()
                    _final = self.punc.punctuate(asr_offline_final)[0]
                    logger.debug(
                        f"punc online inference use {time.time() - time_start} s"
                    )

                    result["text"] = _final
                    result["time_stamp"] = {"start": start_ms, "end": end_ms}

                    if is_final:
                        self.reset_asr()

                    yield result

    def two_pass_asr(self, chunk: np.ndarray, is_final: bool = False, hot_words=None):
        self.frames.extend(chunk.tolist())
        self.vad_pre_idx += len(chunk)

        # paraformer online inference

        if self.end_frame != -1:
            time_start = time.time()
            partial = self.asr_online.infer_online(chunk, is_final)
            self.text_cache += partial
            # empty asr online buffer
            logger.debug(f"asr online inference use {time.time() - time_start} s")

        # if self.speech_start:
        #     self.frames_asr_offline.append(chunk)

        # paraformer vad inference
        time_start = time.time()
        segments_result = self.vad.segments_online(chunk, is_final=is_final)
        logger.debug(f"vad online inference use {time.time() - time_start} s")

        segments = self.extract_endpoint_from_vad_result(segments_result)
        final = None
        time_stamp_start = 0
        time_stamp_end = 0
        for start, end in segments:
            if start != -1:
                self.speech_start = True
                self.start_frame = start * 16
                start = self.start_frame + len(self.frames) - self.vad_pre_idx
                self.frames = self.frames[start:]

            # paraformer offline inference
            if end != -1:
                self.end_frame = end * 16
                time_stamp_start = self.start_frame / 16
                time_stamp_end = end
                time_start = time.time()
                end = self.end_frame + len(self.frames) - self.vad_pre_idx
                data = np.array(self.frames[:end])
                self.frames = self.frames[end:]
                asr_offline_final = self.asr_offline.infer_offline(
                    data, hot_words=(hot_words or self.hot_words)
                )
                logger.debug(f"asr offline inference use {time.time() - time_start} s")
                if self.speaker_verification:
                    time_start = time.time()
                    speaker_id = self.sv.recognize(data)
                    logger.debug(
                        f"asr offline inference use {time.time() - time_start} s"
                    )
                self.speech_start = False
                time_start = time.time()
                _final = self.punc.punctuate(asr_offline_final)[0]
                final = _final
                logger.debug(f"punc online inference use {time.time() - time_start} s")

        result = {
            "partial": self.text_cache,
        }
        if final is not None:
            result["final"] = final
            result["partial"] = ""
            result["time_stamp"] = {"start": time_stamp_start, "end": time_stamp_end}
            if self.speaker_verification:
                result["speaker_id"] = speaker_id
            self.text_cache = ""

        if is_final:
            self.reset_asr()

        return result

    def two_pass_for_dialogue(self, chunk, is_final=False):
        """
        asr for dialogue
        :return:
        """
        self.frames.append(chunk)
        self.vad_pre_idx += len(chunk) // 16

        # paraformer online inference
        self.frames_asr_online.append(chunk)
        if self.speaker_verification and len(self.frames) > 3:
            time_start = time.time()
            speaker_id = self.sv.recognize(np.concatenate(self.frames[-3:]))
            # print(speaker_id)
            logger.debug(f"asr offline inference use {time.time() - time_start} s")

        if len(self.frames_asr_online) > 0 or self.end_frame != -1:
            time_start = time.time()
            data = np.concatenate(self.frames_asr_online)
            partial = self.asr_online.infer_online(data, is_final)
            self.text_cache += partial
            # empty asr online buffer
            logger.debug(f"asr online inference use {time.time() - time_start} s")
            self.frames_asr_online = []

        if self.speech_start:
            self.frames_asr_offline.append(chunk)

        # parafprmer vad inference
        time_start = time.time()
        segments_result = self.vad.segments_online(chunk, is_final=is_final)
        logger.debug(f"vad online inference use {time.time() - time_start} s")

        segments = self.extract_endpoint_from_vad_result(segments_result)
        final = None
        for start, end in segments:
            self.start_frame = start
            self.end_frame = end
            # print(self.start_frame, self.end_frame)
            if self.start_frame != -1:
                self.speech_start = True
                beg_bias = (self.vad_pre_idx - self.start_frame) / (len(chunk) // 16)
                # print(beg_bias)
                end_idx = (beg_bias % 1) * len(self.frames[-int(beg_bias) - 1])
                frames_pre = [self.frames[-int(beg_bias) - 1][-int(end_idx) :]]
                if int(beg_bias) != 0:
                    frames_pre.extend(self.frames[-int(beg_bias) :])
                frames_pre = [np.concatenate(frames_pre)]
                # print(len(frames_pre[0]))
                self.frames_asr_offline = []
                self.frames_asr_offline.extend(frames_pre)
                # clear the frames queue
                # self.frames = self.frames[-10:]

            # parafprmer offline inference
            if self.end_frame != -1 and len(self.frames_asr_offline) > 0:
                time_start = time.time()
                if len(self.frames_asr_offline) > 1:
                    data = np.concatenate(self.frames_asr_offline[:-1])
                else:
                    data = np.concatenate(self.frames_asr_offline)
                asr_offline_final = self.asr_offline.infer_offline(data)
                logger.debug(f"asr offline inference use {time.time() - time_start} s")
                if len(self.frames_asr_offline) > 1:
                    self.frames_asr_offline = [self.frames_asr_offline[-1]]
                else:
                    self.frames_asr_offline = []
                self.speech_start = False
                time_start = time.time()
                _final = self.punc.punctuate(asr_offline_final)[0]
                if final is not None:
                    final += _final
                else:
                    final = _final
                logger.debug(f"punc online inference use {time.time() - time_start} s")

        result = {
            "partial": self.text_cache,
        }
        if final is not None:
            result["final"] = final
            result["partial"] = ""
            # if self.speaker_verification:
            #     result["speaker_id"] = speaker_id
            self.text_cache = ""

        if is_final:
            self.reset_asr()

        return result