File size: 5,794 Bytes
890de26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
"""
File: app.py
Author: Elena Ryumina and Dmitry Ryumin
Description: Description: Main application file for Facial_Expression_Recognition.
             The file defines the Gradio interface, sets up the main blocks,
             and includes event handlers for various components.
License: MIT License
"""

import os

import gradio as gr

from app_utils import preprocess_image_and_predict, preprocess_video_and_predict, preprocess_video_and_rank
from authors import AUTHORS

# Importing necessary components for the Gradio app
from description import DESCRIPTION_DYNAMIC, DESCRIPTION_STATIC

os.environ["no_proxy"] = "localhost,127.0.0.1,::1"
# def clear_static_info():
#     return (
#         gr.Image(value=None, type="pil"),
#         gr.Image(value=None, scale=1, elem_classes="dl5"),
#         gr.Image(value=None, scale=1, elem_classes="dl2"),
#         gr.Label(value=None, num_top_classes=3, scale=1, elem_classes="dl3"),
#     )


# def clear_dynamic_info():
#     return (
#         gr.Video(value=None),
#         gr.Video(value=None),
#         gr.Video(value=None),
#         gr.Video(value=None),
#         gr.Plot(value=None),
#         #gr.Textbox(Value=None)
#     )
def clear_dynamic_info():
    return (
        gr.Video(value=None),
        gr.Plot(value=None),
        gr.Textbox(""),
    )

with gr.Blocks(css="app.css") as demo:
    with gr.Tab("Dynamic App"):
        gr.Markdown(value=DESCRIPTION_DYNAMIC)
        with gr.Row():
            with gr.Column(scale=2):
                input_video = gr.Video(sources=["webcam", "upload"], elem_classes="video1")
                with gr.Row():
                    clear_btn_dynamic = gr.Button(
                        value="Clear", interactive=True, scale=1
                    )
                    # submit_dynamic = gr.Button(
                    #     value="Submit", interactive=True, scale=1, elem_classes="submit"
                    # )
                    submit_and_rank=gr.Button(value="Score", interactive=True, scale=1,elem_classes="submit")
            with gr.Column(scale=2, elem_classes="dl4"):
                with gr.Row():
                    # output_video = gr.Video(
                    #     label="Original video", scale=1, elem_classes="video2",visible=False,
                    # )
                    # output_face = gr.Video(
                    #     label="Pre-processed video", scale=1, elem_classes="video3",visible=False,
                    # )
                    # output_heatmaps = gr.Video(
                    #     label="Heatmaps", scale=1, elem_classes="video4",visible=False,
                    # )
                    # debug_texts = gr.Textbox(lines=3,label='debug')
                    output_score=gr.Textbox(label='scores')
                output_statistics = gr.Plot(
                    label="Statistics of emotions", elem_classes="stat"
                )
        gr.Examples(
            [
                "videos/video1.mp4",
                "videos/video2.mp4",
                "videos/sample.webm",
                "videos/cnm.mp4",
            ],
            [input_video],
        )

    # with gr.Tab("Static App"):
    #     gr.Markdown(value=DESCRIPTION_STATIC)
    #     with gr.Row():
    #         with gr.Column(scale=2, elem_classes="dl1"):
    #             input_image = gr.Image(label="Original image", type="pil")
    #             with gr.Row():
    #                 clear_btn = gr.Button(
    #                     value="Clear", interactive=True, scale=1, elem_classes="clear"
    #                 )
    #                 submit = gr.Button(
    #                     value="Submit", interactive=True, scale=1, elem_classes="submit"
    #                 )
    #         with gr.Column(scale=1, elem_classes="dl4"):
    #             with gr.Row():
    #                 output_image = gr.Image(label="Face", scale=1, elem_classes="dl5")
    #                 output_heatmap = gr.Image(
    #                     label="Heatmap", scale=1, elem_classes="dl2"
    #                 )
    #             output_label = gr.Label(num_top_classes=3, scale=1, elem_classes="dl3")
    #     gr.Examples(
    #         [
    #             "images/fig7.jpg",
    #             "images/fig1.jpg",
    #             "images/fig2.jpg",
    #             "images/fig3.jpg",
    #             "images/fig4.jpg",
    #             "images/fig5.jpg",
    #             "images/fig6.jpg",
    #         ],
    #         [input_image],
    #     )
    with gr.Tab("Authors"):
        gr.Markdown(value=AUTHORS)

    # submit.click(
    #     fn=preprocess_image_and_predict,
    #     inputs=[input_image],
    #     outputs=[output_image, output_heatmap, output_label],
    #     queue=True,
    # )
    # clear_btn.click(
    #     fn=clear_static_info,
    #     inputs=[],
    #     outputs=[input_image, output_image, output_heatmap, output_label],
    #     queue=True,
    # )

    # submit_dynamic.click(
    #     fn=preprocess_video_and_predict,
    #     inputs=input_video,
    #     outputs=[output_video, output_face, output_heatmaps, output_statistics],
    #     queue=True,
    # )
    clear_btn_dynamic.click(
        fn=clear_dynamic_info,
        inputs=[],
        outputs=[
            # input_video,
            # output_video,
            # output_face,
            # output_heatmaps,
            # output_statistics,
            #debug_texts,            
            input_video,
            output_statistics,
            output_score,
        ],
        queue=True,
    )
    submit_and_rank.click(
        fn=preprocess_video_and_rank,
        inputs=input_video,
        outputs=[
            output_statistics,
            output_score,
        ]
    )

if __name__ == "__main__":
    demo.queue(api_open=False).launch(share=False)