File size: 11,660 Bytes
f837120
890de26
492a71a
890de26
 
 
 
66367e6
dc311f2
890de26
 
 
 
 
55675a3
890de26
0073adb
 
 
 
 
 
 
 
890de26
 
 
0073adb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fefcbfb
 
 
0a209fb
 
fefcbfb
0a209fb
 
 
 
 
 
 
 
 
 
 
 
 
30a0d7d
fefcbfb
0a209fb
 
fefcbfb
0a209fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1991296
0a209fb
 
 
 
 
 
 
0073adb
0a209fb
 
 
 
 
 
 
 
 
 
 
 
 
970cddc
0a209fb
 
 
 
 
 
 
 
 
 
 
970cddc
 
0a209fb
 
 
41b3e9c
0a209fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41b3e9c
0a209fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fefcbfb
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import gradio as gr
import torch
import time
import numpy as np
import mediapipe as mp
from PIL import Image
import cv2
# from pytorch_grad_cam.utils.image import show_cam_on_image
import scipy.io.wavfile as wav
# Importing necessary components for the Gradio app
from model import pth_model_static, pth_model_dynamic, cam, pth_processing
from face_utils import get_box, display_info
from config import DICT_EMO, config_data
from plot import statistics_plot
from moviepy.editor import AudioFileClip

import soundfile as sf
import torchaudio
from speechbrain.pretrained.interfaces import foreign_class
from paraformer import AudioReader, CttPunctuator, FSMNVad, ParaformerOffline
from gradio_client import Client
##############################################################################################
client = Client("Liusuthu/TextDepression")

mp_face_mesh = mp.solutions.face_mesh


classifier = foreign_class(
    source="pretrained_models/local-speechbrain/emotion-recognition-wav2vec2-IEMOCAP",  # ".\\emotion-recognition-wav2vec2-IEMOCAP"
    pymodule_file="custom_interface.py",
    classname="CustomEncoderWav2vec2Classifier",
    savedir="pretrained_models/local-speechbrain/emotion-recognition-wav2vec2-IEMOCAP",
)
ASR_model = ParaformerOffline()
vad = FSMNVad()
punc = CttPunctuator()


#########################################################################################
def text_api(text:str):
    result = client.predict(
        text,  # str  in '输入文字' Textbox component
        api_name="/predict",
    )
    return result

#######################################################################
#规范函数,只管值输入输出:
def text_score(text):
    if text==None:
        gr.Warning("提交内容为空!")
    else:
        string=text_api(text)
        part1 = str.partition(string, r"text")
        want1 = part1[2]
        label = want1[4:6]
        part2 = str.partition(string, r"probability")
        want2 = part2[2]
        prob = float(want2[3:-4])
        if label=="正向":
            score=-np.log10(prob*10)
        else:
            score=np.log10(prob*10)
        # print("from func:text_score————,text:",text,",score:",score)
        return text,score

def speech_score(audio):
    if audio==None:
        gr.Warning("提交内容为空!请等待音频加载完毕后再尝试提交!")
    else:
        print(type(audio))
        print(audio)
        sample_rate, signal = audio  # 这是语音的输入
        signal = signal.astype(np.float32)
        signal /= np.max(np.abs(signal))
        sf.write("data/a.wav", signal, sample_rate)
        signal, sample_rate = torchaudio.load("data/a.wav")
        signal1 = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(
            signal
        )
        torchaudio.save("data/out.wav", signal1, 16000, encoding="PCM_S", bits_per_sample=16)
        Audio = "data/out.wav"
        speech, sample_rate = AudioReader.read_wav_file(Audio)
        if signal == "none":
            return "none", "none", "haha"
        else:
            segments = vad.segments_offline(speech)
            text_results = ""
            for part in segments:
                _result = ASR_model.infer_offline(
                    speech[part[0] * 16 : part[1] * 16], hot_words="任意热词 空格分开"
                )
                text_results += punc.punctuate(_result)[0]
    
            out_prob, score, index, text_lab = classifier.classify_batch(signal1)
            print("from func:speech_score————type and value of prob:")
            print(type(out_prob.squeeze(0).numpy()))
            print(out_prob.squeeze(0).numpy())
            print("from func:speech_score————type and value of resul_label:")
            print(type(text_lab[-1]))
            print(text_lab[-1])
            #return text_results, out_prob.squeeze(0).numpy(), text_lab[-1], Audio
            prob=out_prob.squeeze(0).numpy()
            #print(prob)
            score2=10*prob[0]-10*prob[1]
            if score2>=0:
                score2=np.log10(score2)
            else:
                score2=-np.log10(-score2)
            # print("from func:speech_score————score2:",score2)
            # print("from func:speech_score————",text_lab[-1])
            
            text,score1=text_score(text_results)
            # # text_emo=str(get_text_score(text_results))
            # print("from func:speech_score————text:",text,",score1:",score1)
            score=(2/3)*score1+(1/3)*score2
            
    
            return text,score


def video_score(video):
    if video==None:
        gr.Warning("提交内容为空!请等待视频加载完毕后再尝试提交!")
    else:
        cap = cv2.VideoCapture(video)
        w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
        h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = np.round(cap.get(cv2.CAP_PROP_FPS))
    
        path_save_video_face = 'result_face.mp4'
        vid_writer_face = cv2.VideoWriter(path_save_video_face, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))
    
        # path_save_video_hm = 'result_hm.mp4'
        # vid_writer_hm = cv2.VideoWriter(path_save_video_hm, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))
    
        lstm_features = []
        count_frame = 1
        count_face = 0
        probs = []
        frames = []
        last_output = None
        last_heatmap = None 
        cur_face = None
    
        with mp_face_mesh.FaceMesh(
        max_num_faces=1,
        refine_landmarks=False,
        min_detection_confidence=0.5,
        min_tracking_confidence=0.5) as face_mesh:
    
            while cap.isOpened():
                _, frame = cap.read()
                if frame is None: break
    
                frame_copy = frame.copy()
                frame_copy.flags.writeable = False
                frame_copy = cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
                results = face_mesh.process(frame_copy)
                frame_copy.flags.writeable = True
    
                if results.multi_face_landmarks:
                    for fl in results.multi_face_landmarks:
                        startX, startY, endX, endY  = get_box(fl, w, h)
                        cur_face = frame_copy[startY:endY, startX: endX]
    
                        if count_face%config_data.FRAME_DOWNSAMPLING == 0:
                            cur_face_copy = pth_processing(Image.fromarray(cur_face))
                            with torch.no_grad():
                                features = torch.nn.functional.relu(pth_model_static.extract_features(cur_face_copy)).detach().numpy()
    
                            # grayscale_cam = cam(input_tensor=cur_face_copy)
                            # grayscale_cam = grayscale_cam[0, :]
                            # cur_face_hm = cv2.resize(cur_face,(224,224), interpolation = cv2.INTER_AREA)
                            # cur_face_hm = np.float32(cur_face_hm) / 255
                            # heatmap = show_cam_on_image(cur_face_hm, grayscale_cam, use_rgb=False)
                            # last_heatmap = heatmap
            
                            if len(lstm_features) == 0:
                                lstm_features = [features]*10
                            else:
                                lstm_features = lstm_features[1:] + [features]
    
                            lstm_f = torch.from_numpy(np.vstack(lstm_features))
                            lstm_f = torch.unsqueeze(lstm_f, 0)
                            with torch.no_grad():
                                output = pth_model_dynamic(lstm_f).detach().numpy()
                            last_output = output
    
                            if count_face == 0:
                                count_face += 1
    
                        else:
                            if last_output is not None:
                                output = last_output
                                # heatmap = last_heatmap
    
                            elif last_output is None:
                                output = np.empty((1, 7))
                                output[:] = np.nan
                                
                        probs.append(output[0])
                        frames.append(count_frame)
                else:
                    if last_output is not None:
                        lstm_features = []
                        empty = np.empty((7))
                        empty[:] = np.nan
                        probs.append(empty)
                        frames.append(count_frame)                        
    
                if cur_face is not None:
                    # heatmap_f = display_info(heatmap, 'Frame: {}'.format(count_frame), box_scale=.3)
    
                    cur_face = cv2.cvtColor(cur_face, cv2.COLOR_RGB2BGR)
                    cur_face = cv2.resize(cur_face, (224,224), interpolation = cv2.INTER_AREA)
                    cur_face = display_info(cur_face, 'Frame: {}'.format(count_frame), box_scale=.3)
                    vid_writer_face.write(cur_face)
                    # vid_writer_hm.write(heatmap_f)
    
                count_frame += 1
                if count_face != 0:
                    count_face += 1
    
            vid_writer_face.release()
            # vid_writer_hm.release()
    
            stat = statistics_plot(frames, probs)
    
            if not stat:
                return None, None
    
        #for debug
        print("from func:video_score————")
        print(type(frames))
        print(frames)
        print(type(probs))
        print(probs)        
        # to calculate scores
        nan=float('nan')
        s1 = 0
        s2 = 0
        s3 = 0
        # s4 = 0
        # s5 = 0
        # s6 = 0
        # s7 = 0
        frames_len=len(frames)
        for i in range(frames_len):
            if np.isnan(probs[i][0]):
                frames_len=frames_len-1
            else: 
                s1=s1+probs[i][0]
                s2=s2+probs[i][1]
                s3=s3+probs[i][2]
                # s4=s4+probs[i][3]
                # s5=s5+probs[i][4]
                # s6=s6+probs[i][5]
                # s7=s7+probs[i][6]
        s1=s1/frames_len
        s2=s2/frames_len
        s3=s3/frames_len
        # s4=s4/frames_len
        # s5=s5/frames_len
        # s6=s6/frames_len
        # s7=s7/frames_len
        # scores=[s1,s2,s3,s4,s5,s6,s7]
        # scores_str=str(scores)
        # score1=0*scores[0]-8*scores[1]+4*scores[2]+0*scores[3]+2*scores[4]+2*scores[5]+4*scores[6]
        #print("from func:video_score————score1=",score1)
        #print("from func:video_score————logs:")
        # with open("local_data/data.txt",'a', encoding="utf8") as f:
        #     f.write(scores_str+'\n')
    
        # with open("local_data/data.txt",'r', encoding="utf8") as f:
        #     for i in f:
        #         print(i)
    
    
        print(str([s1,s2,s3]))
        if s1>=0.4:
            score1=0
        else:
            if s2>=s3:
                score1=-1
            else:
                score1=+1
        #trans the audio file
        my_audio_clip = AudioFileClip(video)
        my_audio_clip.write_audiofile("data/audio.wav",ffmpeg_params=["-ac","1"])
    
        audio = wav.read('data/audio.wav')
    
        text,score2=speech_score(audio)
    
        #print("from func:video_score————text:",text)
    
        score=(score1+6*score2)/7
        #print("from func:video_score————score:",score)
        return text,score
#######################################################################