File size: 21,744 Bytes
890de26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
# -*- coding:utf-8 -*-
# @FileName  :paraformer.py
# @Time      :2023/8/8 20:04
# @Author    :lovemefan
# @Email     :[email protected]
import glob
import os
import pickle
from pathlib import Path
from typing import List, Tuple, Union

import numpy as np

from paraformer.runtime.python.model.lm.transformer_lm import TransformerLM
from paraformer.runtime.python.utils.asrOrtInferRuntimeSession import (
    AsrOfflineOrtInferRuntimeSession,
    AsrOnlineDecoderOrtInferRuntimeSession,
    AsrOnlineEncoderOrtInferRuntimeSession,
    CharTokenizer,
    Hypothesis,
    TokenIDConverter,
)
from paraformer.runtime.python.utils.audioHelper import AudioReader
from paraformer.runtime.python.utils.logger import logger
from paraformer.runtime.python.utils.postprocess import sentence_postprocess
from paraformer.runtime.python.utils.preprocess import (
    SinusoidalPositionEncoderOnline,
    WavFrontend,
    WavFrontendOnline,
)
from paraformer.runtime.python.utils.singleton import get_all_instance, singleton


class ParaformerOnlineModel:
    def __init__(
        self,
        model_dir: Union[str, Path] = None,
        batch_size: int = 1,
        chunk_size: List = [5, 10, 5],
        device_id: Union[str, int] = "-1",
        quantize: bool = False,
        intra_op_num_threads: int = 4,
    ):
        logger.info(f"init online context for client")
        config_file = os.path.join(model_dir, "config.pkl")
        with open(config_file, "rb") as file:
            config = pickle.load(file)
        cmvn_file = os.path.join(model_dir, "am.mvn")

        self.converter = TokenIDConverter(config["token_list"])
        self.tokenizer = CharTokenizer()
        self.frontend = WavFrontendOnline(
            cmvn_file=cmvn_file, **config["frontend_conf"]
        )

        if (
            "AsrOnlineEncoderOrtInferRuntimeSession" not in get_all_instance()
            and "AsrOnlineDecoderOrtInferRuntimeSession" not in get_all_instance()
        ):
            if not Path(model_dir).exists():
                raise FileNotFoundError(f"{model_dir} is not exist")

            encoder_model_file = os.path.join(model_dir, "model.onnx")
            decoder_model_file = os.path.join(model_dir, "decoder.onnx")
            if quantize:
                encoder_model_file = glob.glob(
                    os.path.join(model_dir, "model_quant_*.onnx")
                )
                decoder_model_file = os.path.join(model_dir, "decoder_quant.onnx")

            self.pe = SinusoidalPositionEncoderOnline()

            self.ort_encoder_infer = AsrOnlineEncoderOrtInferRuntimeSession(
                encoder_model_file, device_id, intra_op_num_threads=intra_op_num_threads
            )
            self.ort_decoder_infer = AsrOnlineDecoderOrtInferRuntimeSession(
                decoder_model_file, device_id, intra_op_num_threads=intra_op_num_threads
            )
        else:
            self.pe = SinusoidalPositionEncoderOnline()

            self.ort_encoder_infer = get_all_instance().get(
                "AsrOnlineEncoderOrtInferRuntimeSession"
            )
            self.ort_decoder_infer = get_all_instance().get(
                "AsrOnlineDecoderOrtInferRuntimeSession"
            )

        self.batch_size = batch_size
        self.chunk_size = chunk_size
        self.encoder_output_size = config["encoder_conf"]["output_size"]
        self.fsmn_layer = config["decoder_conf"]["num_blocks"]
        self.fsmn_lorder = config["decoder_conf"]["kernel_size"] - 1
        self.fsmn_dims = config["encoder_conf"]["output_size"]
        self.feats_dims = (
            config["frontend_conf"]["n_mels"] * config["frontend_conf"]["lfr_m"]
        )
        self.cif_threshold = config["predictor_conf"]["threshold"]
        self.tail_threshold = config["predictor_conf"]["tail_threshold"]

    def prepare_cache(self, cache: dict = {}, batch_size=1):
        if len(cache) > 0:
            return cache
        cache["start_idx"] = 0
        cache["cif_hidden"] = np.zeros(
            (batch_size, 1, self.encoder_output_size)
        ).astype(np.float32)
        cache["cif_alphas"] = np.zeros((batch_size, 1)).astype(np.float32)
        cache["chunk_size"] = self.chunk_size
        cache["last_chunk"] = False
        cache["feats"] = np.zeros(
            (batch_size, self.chunk_size[0] + self.chunk_size[2], self.feats_dims)
        ).astype(np.float32)
        cache["decoder_fsmn"] = []
        for i in range(self.fsmn_layer):
            fsmn_cache = np.zeros(
                (batch_size, self.fsmn_dims, self.fsmn_lorder)
            ).astype(np.float32)
            cache["decoder_fsmn"].append(fsmn_cache)
        return cache

    def add_overlap_chunk(self, feats: np.ndarray, cache: dict = {}):
        if len(cache) == 0:
            return feats
        # process last chunk
        overlap_feats = np.concatenate((cache["feats"], feats), axis=1)
        if cache["is_final"]:
            cache["feats"] = overlap_feats[:, -self.chunk_size[0] :, :]
            if not cache["last_chunk"]:
                padding_length = sum(self.chunk_size) - overlap_feats.shape[1]
                overlap_feats = np.pad(
                    overlap_feats, ((0, 0), (0, padding_length), (0, 0))
                )
        else:
            cache["feats"] = overlap_feats[
                :, -(self.chunk_size[0] + self.chunk_size[2]) :, :
            ]
        return overlap_feats

    def __call__(self, audio_in: np.ndarray, **kwargs):
        waveforms = np.expand_dims(audio_in, axis=0)
        param_dict = kwargs.get("param_dict", dict())
        is_final = param_dict.get("is_final", False)
        cache = param_dict.get("cache", dict())
        asr_res = []

        if waveforms.shape[1] < 16 * 60 and is_final and len(cache) > 0:
            cache["last_chunk"] = True
            feats = cache["feats"]
            feats_len = np.array([feats.shape[1]]).astype(np.int32)
            asr_res = self.infer(feats, feats_len, cache)
            return asr_res

        feats, feats_len = self.extract_feat(waveforms, is_final)
        if feats.shape[1] != 0:
            feats *= self.encoder_output_size**0.5
            cache = self.prepare_cache(cache)
            cache["is_final"] = is_final

            # fbank -> position encoding -> overlap chunk
            feats = self.pe.forward(feats, cache["start_idx"])
            cache["start_idx"] += feats.shape[1]
            if is_final:
                if feats.shape[1] + self.chunk_size[2] <= self.chunk_size[1]:
                    cache["last_chunk"] = True
                    feats = self.add_overlap_chunk(feats, cache)
                else:
                    # first chunk
                    feats_chunk1 = self.add_overlap_chunk(
                        feats[:, : self.chunk_size[1], :], cache
                    )
                    feats_len = np.array([feats_chunk1.shape[1]]).astype(np.int32)
                    asr_res_chunk1 = self.infer(feats_chunk1, feats_len, cache)

                    # last chunk
                    cache["last_chunk"] = True
                    feats_chunk2 = self.add_overlap_chunk(
                        feats[
                            :,
                            -(
                                feats.shape[1] + self.chunk_size[2] - self.chunk_size[1]
                            ) :,
                            :,
                        ],
                        cache,
                    )
                    feats_len = np.array([feats_chunk2.shape[1]]).astype(np.int32)
                    asr_res_chunk2 = self.infer(feats_chunk2, feats_len, cache)

                    asr_res_chunk = asr_res_chunk1 + asr_res_chunk2
                    res = {}
                    for pred in asr_res_chunk:
                        for key, value in pred.items():
                            if key in res:
                                res[key][0] += value[0]
                                res[key][1].extend(value[1])
                            else:
                                res[key] = [value[0], value[1]]
                    return [res]
            else:
                feats = self.add_overlap_chunk(feats, cache)

            feats_len = np.array([feats.shape[1]]).astype(np.int32)
            asr_res = self.infer(feats, feats_len, cache)

        return asr_res

    def infer(self, feats: np.ndarray, feats_len: np.ndarray, cache):
        # encoder forward
        enc_input = [feats, feats_len]
        enc, enc_lens, cif_alphas = self.ort_encoder_infer(enc_input)

        # predictor forward
        acoustic_embeds, acoustic_embeds_len = self.cif_search(enc, cif_alphas, cache)
        # decoder forward
        asr_res = []
        if acoustic_embeds.shape[1] > 0:
            dec_input = [enc, enc_lens, acoustic_embeds, acoustic_embeds_len]
            dec_input.extend(cache["decoder_fsmn"])
            dec_output = self.ort_decoder_infer(dec_input)
            logits, _, cache["decoder_fsmn"] = (
                dec_output[0],
                dec_output[1],
                dec_output[2:],
            )
            cache["decoder_fsmn"] = [
                item[:, :, -self.fsmn_lorder :] for item in cache["decoder_fsmn"]
            ]

            preds = self.decode(logits, acoustic_embeds_len)

            for pred in preds:
                pred = sentence_postprocess(pred)
                asr_res.append({"preds": pred})

        return asr_res

    def load_data(self, wav_content: Union[str, np.ndarray, List[str]]) -> List:
        def load_wav(path: str) -> np.ndarray:
            waveform, _ = AudioReader.read_wav_file(path)
            return waveform

        if isinstance(wav_content, np.ndarray):
            return [wav_content]

        if isinstance(wav_content, str):
            return [load_wav(wav_content)]

        if isinstance(wav_content, list):
            return [load_wav(path) for path in wav_content]

        raise TypeError(f"The type of {wav_content} is not in [str, np.ndarray, list]")

    def extract_feat(
        self, waveforms: np.ndarray, is_final: bool = False
    ) -> Tuple[np.ndarray, np.ndarray]:
        waveforms_lens = np.zeros(waveforms.shape[0]).astype(np.int32)
        for idx, waveform in enumerate(waveforms):
            waveforms_lens[idx] = waveform.shape[-1]

        feats, feats_len = self.frontend.extract_fbank(
            waveforms, waveforms_lens, is_final
        )
        return feats.astype(np.float32), feats_len.astype(np.int32)

    def decode(self, am_scores: np.ndarray, token_nums: int):
        return [
            self.decode_one(am_score, token_num)
            for am_score, token_num in zip(am_scores, token_nums)
        ]

    def decode_one(self, am_score: np.ndarray, valid_token_num: int) -> List[str]:
        yseq = am_score.argmax(axis=-1)
        score = am_score.max(axis=-1)
        score = np.sum(score, axis=-1)

        # pad with mask tokens to ensure compatibility with sos/eos tokens
        # asr_model.sos:1  asr_model.eos:2
        yseq = np.array([1] + yseq.tolist() + [2])
        hyp = Hypothesis(yseq=yseq, score=score)

        # remove sos/eos and get results
        last_pos = -1
        token_int = hyp.yseq[1:last_pos].tolist()

        # remove blank symbol id, which is assumed to be 0
        token_int = list(filter(lambda x: x not in (0, 2), token_int))

        # Change integer-ids to tokens
        token = self.converter.ids2tokens(token_int)
        token = token[:valid_token_num]
        # texts = sentence_postprocess(token)
        return token

    def cif_search(self, hidden, alphas, cache=None):
        batch_size, len_time, hidden_size = hidden.shape
        token_length = []
        list_fires = []
        list_frames = []
        cache_alphas = []
        cache_hiddens = []
        alphas[:, : self.chunk_size[0]] = 0.0
        alphas[:, sum(self.chunk_size[:2]) :] = 0.0
        if cache is not None and "cif_alphas" in cache and "cif_hidden" in cache:
            hidden = np.concatenate((cache["cif_hidden"], hidden), axis=1)
            alphas = np.concatenate((cache["cif_alphas"], alphas), axis=1)
        if cache is not None and "last_chunk" in cache and cache["last_chunk"]:
            tail_hidden = np.zeros((batch_size, 1, hidden_size)).astype(np.float32)
            tail_alphas = np.array([[self.tail_threshold]]).astype(np.float32)
            tail_alphas = np.tile(tail_alphas, (batch_size, 1))
            hidden = np.concatenate((hidden, tail_hidden), axis=1)
            alphas = np.concatenate((alphas, tail_alphas), axis=1)

        len_time = alphas.shape[1]
        for b in range(batch_size):
            integrate = 0.0
            frames = np.zeros(hidden_size).astype(np.float32)
            list_frame = []
            list_fire = []
            for t in range(len_time):
                alpha = alphas[b][t]
                if alpha + integrate < self.cif_threshold:
                    integrate += alpha
                    list_fire.append(integrate)
                    frames += alpha * hidden[b][t]
                else:
                    frames += (self.cif_threshold - integrate) * hidden[b][t]
                    list_frame.append(frames)
                    integrate += alpha
                    list_fire.append(integrate)
                    integrate -= self.cif_threshold
                    frames = integrate * hidden[b][t]

            cache_alphas.append(integrate)
            if integrate > 0.0:
                cache_hiddens.append(frames / integrate)
            else:
                cache_hiddens.append(frames)

            token_length.append(len(list_frame))
            list_fires.append(list_fire)
            list_frames.append(list_frame)

        max_token_len = max(token_length)
        list_ls = []
        for b in range(batch_size):
            pad_frames = np.zeros(
                (max_token_len - token_length[b], hidden_size)
            ).astype(np.float32)
            if token_length[b] == 0:
                list_ls.append(pad_frames)
            else:
                list_ls.append(np.concatenate((list_frames[b], pad_frames), axis=0))

        cache["cif_alphas"] = np.stack(cache_alphas, axis=0)
        cache["cif_alphas"] = np.expand_dims(cache["cif_alphas"], axis=0)
        cache["cif_hidden"] = np.stack(cache_hiddens, axis=0)
        cache["cif_hidden"] = np.expand_dims(cache["cif_hidden"], axis=0)

        return np.stack(list_ls, axis=0).astype(np.float32), np.stack(
            token_length, axis=0
        ).astype(np.int32)


@singleton
class ParaformerOfflineModel:
    def __init__(
        self, model_dir: str = None, use_lm=False, intra_op_num_threads=4
    ) -> None:
        config_path = os.path.join(model_dir, "config.pkl")
        with open(config_path, "rb") as file:
            config = pickle.load(file)

        self.use_lm = use_lm
        self.converter = TokenIDConverter(config["token_list"])
        self.tokenizer = CharTokenizer(**config["CharTokenizer"])
        self.frontend = WavFrontend(
            cmvn_file=os.path.join(model_dir, "am.mvn"), **config["frontend_conf"]
        )
        if os.path.exists(os.path.join(model_dir, "model_quant.onnx")):
            model_file = os.path.join(model_dir, "model_quant.onnx")
        else:
            model_file = glob.glob(os.path.join(model_dir, "model_quant_*.onnx"))

        contextual_model = os.path.join(model_dir, "model_eb.onnx")

        if use_lm:
            lm_model_path = os.path.join(model_dir, "lm")
            self.lm = TransformerLM(lm_model_path, intra_op_num_threads)

        self.ort_infer = AsrOfflineOrtInferRuntimeSession(
            model_file,
            contextual_model=contextual_model,
            intra_op_num_threads=intra_op_num_threads,
        )

    def extract_feat(self, waveforms: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
        fbank, fbank_len = self.frontend.fbank(waveforms)
        feats, feats_len = self.frontend.lfr_cmvn(fbank)

        return feats.astype(np.float32), feats_len.astype(np.int32)

    def decoder_with_greedy_search(self, am_score):
        yseq = am_score.argmax(axis=-1)
        score = am_score.max(axis=-1)
        score = np.sum(score, axis=-1)

        # pad with mask tokens to ensure compatibility with sos/eos tokens
        # asr_model.sos:1  asr_model.eos:2
        yseq = np.array([1] + yseq.tolist() + [2])
        hyp = Hypothesis(yseq=yseq, score=score)
        # remove sos/eos and get results
        last_pos = -1
        token_int = hyp.yseq[1:last_pos].tolist()

        # remove blank symbol id, which is assumed to be 0
        token_int = list(filter(lambda x: x not in (0, 2), token_int))

        # Change integer-ids to tokens
        token = self.converter.ids2tokens(token_int)
        texts = sentence_postprocess(token)
        return texts

    def search(self, beams, am_score: np.ndarray, beam_size=5, lm_weight=0.25):
        """Search new tokens for running hypotheses and encoded speech x.

        Args:
            beams (List[Hypothesis]): Running hypotheses on beam
            am_score (torch.Tensor): decoded output (L, vocab_size)
            beam_size: beam size
            lm_weight: the weight of lm

        """
        best_hyps = []
        n_vocab = len(self.converter.token_list)
        part_ids = np.arange(n_vocab)  # no pre-beam
        for hyp in beams:
            # scoring
            weighted_scores = np.zeros(n_vocab)
            weighted_scores += am_score

            if self.use_lm:
                lm_score = self.lm.lm(hyp.yseq[:, -20:])
                weighted_scores += lm_weight * lm_score[0][0]

            # add previous hyp score
            weighted_scores += hyp.score

            # update hyps
            for j in np.argpartition(weighted_scores, -beam_size)[-beam_size:]:
                # will be (2 x beam at most)
                best_hyps.append(
                    Hypothesis(
                        score=weighted_scores[j],
                        yseq=np.concatenate(
                            (hyp.yseq[0], np.array([j], dtype=np.int64))
                        )[None, ...],
                    )
                )

            # sort and prune 2 x beam -> beam
            best_hyps = sorted(best_hyps, key=lambda x: x.score, reverse=True)[
                : min(len(best_hyps), beam_size)
            ]
        return best_hyps

    def decoder_with_beam_search(self, am_scores, beam_size=5, lm_weight=0.15):
        # set length bounds
        # main loop of prefix search
        beams = [
            Hypothesis(
                score=0,
                yseq=np.array([[1]], dtype=np.int64),
            )
        ]
        for score in am_scores:
            beams = self.search(beams, score, beam_size=beam_size, lm_weight=lm_weight)

        # remove blank symbol id, which is assumed to be 0
        token_int = list(filter(lambda x: x not in (0, 2), beams[0].yseq.tolist()[0]))

        # Change integer-ids to tokens
        token = self.converter.ids2tokens(token_int)
        texts = sentence_postprocess(token)

        return texts

    def infer(
        self,
        audio: Union[str, np.ndarray, bytes],
        hot_words: str = None,
        beam_search=False,
        beam_size=5,
        lm_weight=0.15,
    ):
        if isinstance(audio, str):
            audio, _ = AudioReader.read_wav_file(audio)
        elif isinstance(audio, bytes):
            audio, _ = AudioReader.read_wav_bytes(audio)

        feats, feats_len = self.extract_feat(audio)
        feats = feats[None, ...]
        feats_len = feats_len[None, ...]

        hot_words, hot_words_length = self.proc_hot_words(hot_words)

        input_dict = dict(
            zip(self.ort_infer.get_contextual_model_input_names(), (hot_words,))
        )
        [bias_embed] = self.ort_infer.contextual_model.run(None, input_dict)

        # index from bias_embed
        bias_embed = bias_embed.transpose(1, 0, 2)
        _ind = np.arange(0, len(hot_words)).tolist()
        bias_embed = bias_embed[_ind, hot_words_length]
        bias_embed = np.expand_dims(bias_embed, axis=0)
        bias_embed = np.repeat(bias_embed, feats.shape[0], axis=0)

        if feats_len > 0:
            am_scores = self.ort_infer(
                feats=feats, feats_length=feats_len, bias_embed=bias_embed
            )
        else:
            am_scores = []

        results = []
        for am_score in am_scores:
            if beam_search:
                pred_res = self.decoder_with_beam_search(
                    am_score, beam_size=beam_size, lm_weight=lm_weight
                )
            else:
                pred_res = self.decoder_with_greedy_search(am_score)
            results.append(pred_res)
        return results if len(results) != 0 else [[""]]

    def proc_hot_words(self, hot_words: str):
        hot_words = hot_words.strip().split(" ")
        hot_words_length = [len(i) - 1 for i in hot_words]
        hot_words_length.append(0)
        hot_words_length = np.array(hot_words_length).astype("int32")

        def word_map(word):
            return np.array([self.converter.tokens2ids(i)[0] for i in word])

        hot_words_int = [word_map(i) for i in hot_words]
        # import pdb; pdb.set_trace()
        hot_words_int.append(np.array([1]))
        hot_words = self._pad_list(hot_words_int, max_len=10)
        return hot_words, hot_words_length

    def _pad_list(self, xs, max_len=None):
        n_batch = len(xs)
        if max_len is None:
            max_len = max(x.size(0) for x in xs)

        pad = np.zeros((n_batch, max_len), dtype=np.int32)

        for i in range(n_batch):
            pad[i, : xs[i].shape[0]] = xs[i]

        return pad