File size: 12,405 Bytes
890de26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55675a3
890de26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55675a3
 
 
 
 
890de26
55675a3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
"""
File: app_utils.py
Author: Elena Ryumina and Dmitry Ryumin
Description: This module contains utility functions for facial expression recognition application.
License: MIT License
"""

import torch
import numpy as np
import mediapipe as mp
from PIL import Image
import cv2
from pytorch_grad_cam.utils.image import show_cam_on_image

# Importing necessary components for the Gradio app
from model import pth_model_static, pth_model_dynamic, cam, pth_processing
from face_utils import get_box, display_info
from config import DICT_EMO, config_data
from plot import statistics_plot
from moviepy.editor import AudioFileClip

mp_face_mesh = mp.solutions.face_mesh


def preprocess_image_and_predict(inp):
    return None, None, None
#     inp = np.array(inp)

#     if inp is None:
#         return None, None

#     try:
#         h, w = inp.shape[:2]
#     except Exception:
#         return None, None

#     with mp_face_mesh.FaceMesh(
#         max_num_faces=1,
#         refine_landmarks=False,
#         min_detection_confidence=0.5,
#         min_tracking_confidence=0.5,
#     ) as face_mesh:
#         results = face_mesh.process(inp)
#         if results.multi_face_landmarks:
#             for fl in results.multi_face_landmarks:
#                 startX, startY, endX, endY = get_box(fl, w, h)
#                 cur_face = inp[startY:endY, startX:endX]
#                 cur_face_n = pth_processing(Image.fromarray(cur_face))
#                 with torch.no_grad():
#                     prediction = (
#                         torch.nn.functional.softmax(pth_model_static(cur_face_n), dim=1)
#                         .detach()
#                         .numpy()[0]
#                     )
#                 confidences = {DICT_EMO[i]: float(prediction[i]) for i in range(7)}
#                 grayscale_cam = cam(input_tensor=cur_face_n)
#                 grayscale_cam = grayscale_cam[0, :]
#                 cur_face_hm = cv2.resize(cur_face,(224,224))
#                 cur_face_hm = np.float32(cur_face_hm) / 255
#                 heatmap = show_cam_on_image(cur_face_hm, grayscale_cam, use_rgb=True)

#     return cur_face, heatmap, confidences


def preprocess_video_and_predict(video):

    # cap = cv2.VideoCapture(video)
    # w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    # h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    # fps = np.round(cap.get(cv2.CAP_PROP_FPS))

    # path_save_video_face = 'result_face.mp4'
    # vid_writer_face = cv2.VideoWriter(path_save_video_face, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))

    # path_save_video_hm = 'result_hm.mp4'
    # vid_writer_hm = cv2.VideoWriter(path_save_video_hm, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))

    # lstm_features = []
    # count_frame = 1
    # count_face = 0
    # probs = []
    # frames = []
    # last_output = None
    # last_heatmap = None 
    # cur_face = None

    # with mp_face_mesh.FaceMesh(
    # max_num_faces=1,
    # refine_landmarks=False,
    # min_detection_confidence=0.5,
    # min_tracking_confidence=0.5) as face_mesh:

    #     while cap.isOpened():
    #         _, frame = cap.read()
    #         if frame is None: break

    #         frame_copy = frame.copy()
    #         frame_copy.flags.writeable = False
    #         frame_copy = cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
    #         results = face_mesh.process(frame_copy)
    #         frame_copy.flags.writeable = True

    #         if results.multi_face_landmarks:
    #             for fl in results.multi_face_landmarks:
    #                 startX, startY, endX, endY  = get_box(fl, w, h)
    #                 cur_face = frame_copy[startY:endY, startX: endX]

    #                 if count_face%config_data.FRAME_DOWNSAMPLING == 0:
    #                     cur_face_copy = pth_processing(Image.fromarray(cur_face))
    #                     with torch.no_grad():
    #                         features = torch.nn.functional.relu(pth_model_static.extract_features(cur_face_copy)).detach().numpy()

    #                     grayscale_cam = cam(input_tensor=cur_face_copy)
    #                     grayscale_cam = grayscale_cam[0, :]
    #                     cur_face_hm = cv2.resize(cur_face,(224,224), interpolation = cv2.INTER_AREA)
    #                     cur_face_hm = np.float32(cur_face_hm) / 255
    #                     heatmap = show_cam_on_image(cur_face_hm, grayscale_cam, use_rgb=False)
    #                     last_heatmap = heatmap
        
    #                     if len(lstm_features) == 0:
    #                         lstm_features = [features]*10
    #                     else:
    #                         lstm_features = lstm_features[1:] + [features]

    #                     lstm_f = torch.from_numpy(np.vstack(lstm_features))
    #                     lstm_f = torch.unsqueeze(lstm_f, 0)
    #                     with torch.no_grad():
    #                         output = pth_model_dynamic(lstm_f).detach().numpy()
    #                     last_output = output

    #                     if count_face == 0:
    #                         count_face += 1

    #                 else:
    #                     if last_output is not None:
    #                         output = last_output
    #                         heatmap = last_heatmap

    #                     elif last_output is None:
    #                         output = np.empty((1, 7))
    #                         output[:] = np.nan
                            
    #                 probs.append(output[0])
    #                 frames.append(count_frame)
    #         else:
    #             if last_output is not None:
    #                 lstm_features = []
    #                 empty = np.empty((7))
    #                 empty[:] = np.nan
    #                 probs.append(empty)
    #                 frames.append(count_frame)                        

    #         if cur_face is not None:
    #             heatmap_f = display_info(heatmap, 'Frame: {}'.format(count_frame), box_scale=.3)

    #             cur_face = cv2.cvtColor(cur_face, cv2.COLOR_RGB2BGR)
    #             cur_face = cv2.resize(cur_face, (224,224), interpolation = cv2.INTER_AREA)
    #             cur_face = display_info(cur_face, 'Frame: {}'.format(count_frame), box_scale=.3)
    #             vid_writer_face.write(cur_face)
    #             vid_writer_hm.write(heatmap_f)

    #         count_frame += 1
    #         if count_face != 0:
    #             count_face += 1

    #     vid_writer_face.release()
    #     vid_writer_hm.release()

    #     stat = statistics_plot(frames, probs)

    #     if not stat:
    #         return None, None, None, None
    
    # # print(type(frames))
    # # print(frames)
    # # print(type(probs))
    # # print(probs)
    
    # return video, path_save_video_face, path_save_video_hm, stat
    return None, None, None, None



#to return scores
def preprocess_video_and_rank(video):

    cap = cv2.VideoCapture(video)
    w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    fps = np.round(cap.get(cv2.CAP_PROP_FPS))

    path_save_video_face = 'result_face.mp4'
    vid_writer_face = cv2.VideoWriter(path_save_video_face, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))

    # path_save_video_hm = 'result_hm.mp4'
    # vid_writer_hm = cv2.VideoWriter(path_save_video_hm, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))

    lstm_features = []
    count_frame = 1
    count_face = 0
    probs = []
    frames = []
    last_output = None
    last_heatmap = None 
    cur_face = None

    with mp_face_mesh.FaceMesh(
    max_num_faces=1,
    refine_landmarks=False,
    min_detection_confidence=0.5,
    min_tracking_confidence=0.5) as face_mesh:

        while cap.isOpened():
            _, frame = cap.read()
            if frame is None: break

            frame_copy = frame.copy()
            frame_copy.flags.writeable = False
            frame_copy = cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
            results = face_mesh.process(frame_copy)
            frame_copy.flags.writeable = True

            if results.multi_face_landmarks:
                for fl in results.multi_face_landmarks:
                    startX, startY, endX, endY  = get_box(fl, w, h)
                    cur_face = frame_copy[startY:endY, startX: endX]

                    if count_face%config_data.FRAME_DOWNSAMPLING == 0:
                        cur_face_copy = pth_processing(Image.fromarray(cur_face))
                        with torch.no_grad():
                            features = torch.nn.functional.relu(pth_model_static.extract_features(cur_face_copy)).detach().numpy()

                        # grayscale_cam = cam(input_tensor=cur_face_copy)
                        # grayscale_cam = grayscale_cam[0, :]
                        # cur_face_hm = cv2.resize(cur_face,(224,224), interpolation = cv2.INTER_AREA)
                        # cur_face_hm = np.float32(cur_face_hm) / 255
                        # heatmap = show_cam_on_image(cur_face_hm, grayscale_cam, use_rgb=False)
                        # last_heatmap = heatmap
        
                        if len(lstm_features) == 0:
                            lstm_features = [features]*10
                        else:
                            lstm_features = lstm_features[1:] + [features]

                        lstm_f = torch.from_numpy(np.vstack(lstm_features))
                        lstm_f = torch.unsqueeze(lstm_f, 0)
                        with torch.no_grad():
                            output = pth_model_dynamic(lstm_f).detach().numpy()
                        last_output = output

                        if count_face == 0:
                            count_face += 1

                    else:
                        if last_output is not None:
                            output = last_output
                            # heatmap = last_heatmap

                        elif last_output is None:
                            output = np.empty((1, 7))
                            output[:] = np.nan
                            
                    probs.append(output[0])
                    frames.append(count_frame)
            else:
                if last_output is not None:
                    lstm_features = []
                    empty = np.empty((7))
                    empty[:] = np.nan
                    probs.append(empty)
                    frames.append(count_frame)                        

            if cur_face is not None:
                # heatmap_f = display_info(heatmap, 'Frame: {}'.format(count_frame), box_scale=.3)

                cur_face = cv2.cvtColor(cur_face, cv2.COLOR_RGB2BGR)
                cur_face = cv2.resize(cur_face, (224,224), interpolation = cv2.INTER_AREA)
                cur_face = display_info(cur_face, 'Frame: {}'.format(count_frame), box_scale=.3)
                vid_writer_face.write(cur_face)
                # vid_writer_hm.write(heatmap_f)

            count_frame += 1
            if count_face != 0:
                count_face += 1

        vid_writer_face.release()
        # vid_writer_hm.release()

        stat = statistics_plot(frames, probs)

        if not stat:
            return None, None

    #for debug
    print(type(frames))
    print(frames)
    print(type(probs))
    print(probs)        
    # to calculate scores
    nan=float('nan')
    s1 = 0
    s2 = 0
    s3 = 0
    s4 = 0
    s5 = 0
    s6 = 0
    s7 = 0
    frames_len=len(frames)
    for i in range(frames_len):
        if np.isnan(probs[i][0]):
            frames_len=frames_len-1
        else: 
            s1=s1+probs[i][0]
            s2=s2+probs[i][1]
            s3=s3+probs[i][2]
            s4=s4+probs[i][3]
            s5=s5+probs[i][4]
            s6=s6+probs[i][5]
            s7=s7+probs[i][6]
    s1=s1/frames_len
    s2=s2/frames_len
    s3=s3/frames_len
    s4=s4/frames_len
    s5=s5/frames_len
    s6=s6/frames_len
    s7=s7/frames_len
    scores=[s1,s2,s3,s4,s5,s6,s7]
    scores_str=str(scores)
    with open("local_data/data.txt",'a', encoding="utf8") as f:
        f.write(scores_str+'\n')

    with open("local_data/data.txt",'r', encoding="utf8") as f:
        for i in f:
            print(i)


    #trans the audio file
    my_audio_clip = AudioFileClip(video)
    my_audio_clip.write_audiofile("audio.wav")
    
    return stat,scores_str,"audio.wav"