ResumeParser / app.py
LeoWalker's picture
merged changes
19749ed
raw
history blame
4.25 kB
from dotenv import load_dotenv
import io
import streamlit as st
from langchain.prompts import PromptTemplate
from langchain.output_parsers import PydanticOutputParser
from langchain_community.chat_models import ChatAnthropic
from langchain_openai import ChatOpenAI
from pydantic import ValidationError
from resume_template import Resume
from json import JSONDecodeError
import PyPDF2
import json
<<<<<<< HEAD
import time
=======
>>>>>>> 726975d5ca7f0a98a5047fbda8870a0f03f55283
load_dotenv()
def pdf_to_string(file):
"""
Convert a PDF file to a string.
Parameters:
file (io.BytesIO): A file-like object representing the PDF file.
Returns:
str: The extracted text from the PDF.
"""
pdf_reader = PyPDF2.PdfReader(file)
num_pages = len(pdf_reader.pages)
text = ''
for i in range(num_pages):
page = pdf_reader.pages[i]
text += page.extract_text()
file.close()
return text
def extract_resume_fields(full_text, model):
"""
Analyze a resume text and extract structured information using a specified language model.
Parameters:
full_text (str): The text content of the resume.
model (str): The language model object to use for processing the text.
Returns:
dict: A dictionary containing structured information extracted from the resume.
"""
# The Resume object is imported from the local resume_template file
with open("prompts/resume_extraction.prompt", "r") as f:
template = f.read()
parser = PydanticOutputParser(pydantic_object=Resume)
prompt_template = PromptTemplate(
template=template,
input_variables=["resume"],
partial_variables={"response_template": parser.get_format_instructions()},
)
# Invoke the language model and process the resume
formatted_input = prompt_template.format_prompt(resume=full_text)
llm = llm_dict.get(model, ChatOpenAI(temperature=0, model=model))
# print("llm", llm)
output = llm.invoke(formatted_input.to_string())
# print(output) # Print the output object for debugging
try:
parsed_output = parser.parse(output.content)
json_output = parsed_output.json()
print(json_output)
return json_output
except ValidationError as e:
print(f"Validation error: {e}")
print(output)
return output.content
except JSONDecodeError as e:
print(f"JSONDecodeError error: {e}")
print(output)
return output.content
st.title("Resume Parser")
# Set up the LLM dictionary
llm_dict = {
# "gpt-4-1106-preview": ChatOpenAI(temperature=0, model="gpt-4-1106-preview"),
# "gpt-4": ChatOpenAI(temperature=0, model="gpt-4"),
"gpt-3.5-turbo-1106": ChatOpenAI(temperature=0, model="gpt-3.5-turbo-1106"),
# "claude-2": ChatAnthropic(model="claude-2", max_tokens=20_000),
"claude-instant-1": ChatAnthropic(model="claude-instant-1", max_tokens=20_000)
}
# Add a Streamlit dropdown menu for model selection
selected_model = st.selectbox("Select a model", list(llm_dict.keys()))
# Add a file uploader
uploaded_file = st.file_uploader("Upload a PDF file", type="pdf")
# Check if a file is uploaded
if uploaded_file is not None:
# Add a button to trigger the conversion
if st.button("Convert PDF to Text"):
start_time = time.time() # Start the timer
# Convert the uploaded file to a string
text = pdf_to_string(uploaded_file)
# Extract resume fields using the selected model
extracted_fields = extract_resume_fields(text, selected_model)
end_time = time.time() # Stop the timer
elapsed_time = end_time - start_time # Calculate the elapsed time
# Display the elapsed time
st.write(f"Extraction completed in {elapsed_time:.2f} seconds")
# # Display the extracted fields on the Streamlit app
# st.json(extracted_fields)
# If extracted_fields is a JSON string, convert it to a dictionary
if isinstance(extracted_fields, str):
extracted_fields = json.loads(extracted_fields)
for key, value in extracted_fields.items():
st.write(f"{key}: {value}")