Spaces:
Running
Running
merged changes
Browse files
app.py
CHANGED
@@ -87,17 +87,10 @@ st.title("Resume Parser")
|
|
87 |
|
88 |
# Set up the LLM dictionary
|
89 |
llm_dict = {
|
90 |
-
<<<<<<< HEAD
|
91 |
# "gpt-4-1106-preview": ChatOpenAI(temperature=0, model="gpt-4-1106-preview"),
|
92 |
# "gpt-4": ChatOpenAI(temperature=0, model="gpt-4"),
|
93 |
"gpt-3.5-turbo-1106": ChatOpenAI(temperature=0, model="gpt-3.5-turbo-1106"),
|
94 |
# "claude-2": ChatAnthropic(model="claude-2", max_tokens=20_000),
|
95 |
-
=======
|
96 |
-
"gpt-4-1106-preview": ChatOpenAI(temperature=0, model="gpt-4-1106-preview"),
|
97 |
-
"gpt-4": ChatOpenAI(temperature=0, model="gpt-4"),
|
98 |
-
"gpt-3.5-turbo-1106": ChatOpenAI(temperature=0, model="gpt-3.5-turbo-1106"),
|
99 |
-
"claude-2": ChatAnthropic(model="claude-2", max_tokens=20_000),
|
100 |
-
>>>>>>> 726975d5ca7f0a98a5047fbda8870a0f03f55283
|
101 |
"claude-instant-1": ChatAnthropic(model="claude-instant-1", max_tokens=20_000)
|
102 |
}
|
103 |
|
@@ -111,18 +104,14 @@ uploaded_file = st.file_uploader("Upload a PDF file", type="pdf")
|
|
111 |
if uploaded_file is not None:
|
112 |
# Add a button to trigger the conversion
|
113 |
if st.button("Convert PDF to Text"):
|
114 |
-
<<<<<<< HEAD
|
115 |
start_time = time.time() # Start the timer
|
116 |
|
117 |
-
=======
|
118 |
-
>>>>>>> 726975d5ca7f0a98a5047fbda8870a0f03f55283
|
119 |
# Convert the uploaded file to a string
|
120 |
text = pdf_to_string(uploaded_file)
|
121 |
|
122 |
# Extract resume fields using the selected model
|
123 |
extracted_fields = extract_resume_fields(text, selected_model)
|
124 |
|
125 |
-
<<<<<<< HEAD
|
126 |
end_time = time.time() # Stop the timer
|
127 |
elapsed_time = end_time - start_time # Calculate the elapsed time
|
128 |
|
@@ -139,7 +128,3 @@ if uploaded_file is not None:
|
|
139 |
for key, value in extracted_fields.items():
|
140 |
st.write(f"{key}: {value}")
|
141 |
|
142 |
-
=======
|
143 |
-
# Display the extracted fields on the Streamlit app
|
144 |
-
st.json(extracted_fields)
|
145 |
-
>>>>>>> 726975d5ca7f0a98a5047fbda8870a0f03f55283
|
|
|
87 |
|
88 |
# Set up the LLM dictionary
|
89 |
llm_dict = {
|
|
|
90 |
# "gpt-4-1106-preview": ChatOpenAI(temperature=0, model="gpt-4-1106-preview"),
|
91 |
# "gpt-4": ChatOpenAI(temperature=0, model="gpt-4"),
|
92 |
"gpt-3.5-turbo-1106": ChatOpenAI(temperature=0, model="gpt-3.5-turbo-1106"),
|
93 |
# "claude-2": ChatAnthropic(model="claude-2", max_tokens=20_000),
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
"claude-instant-1": ChatAnthropic(model="claude-instant-1", max_tokens=20_000)
|
95 |
}
|
96 |
|
|
|
104 |
if uploaded_file is not None:
|
105 |
# Add a button to trigger the conversion
|
106 |
if st.button("Convert PDF to Text"):
|
|
|
107 |
start_time = time.time() # Start the timer
|
108 |
|
|
|
|
|
109 |
# Convert the uploaded file to a string
|
110 |
text = pdf_to_string(uploaded_file)
|
111 |
|
112 |
# Extract resume fields using the selected model
|
113 |
extracted_fields = extract_resume_fields(text, selected_model)
|
114 |
|
|
|
115 |
end_time = time.time() # Stop the timer
|
116 |
elapsed_time = end_time - start_time # Calculate the elapsed time
|
117 |
|
|
|
128 |
for key, value in extracted_fields.items():
|
129 |
st.write(f"{key}: {value}")
|
130 |
|
|
|
|
|
|
|
|