Leeps's picture
Upload folder using huggingface_hub
be2faf5 verified
import os
import base64
import numpy as np
from PIL import Image
import io
import requests
import replicate
from flask import Flask, request
import gradio as gr
import openai
from openai import OpenAI
from dotenv import load_dotenv, find_dotenv
# Locate the .env file
dotenv_path = find_dotenv()
load_dotenv(dotenv_path)
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
REPLICATE_API_TOKEN = os.getenv('REPLICATE_API_TOKEN')
client = OpenAI()
def call_openai(pil_image):
# Save the PIL image to a bytes buffer
buffered = io.BytesIO()
pil_image.save(buffered, format="JPEG")
# Encode the image to base64
image_data = base64.b64encode(buffered.getvalue()).decode('utf-8')
try:
response = client.chat.completions.create(
model="gpt-4o",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "You are a product designer. I've attached a moodboard here. In one sentence, what do all of these elements have in common? Answer from a design language perspective, if you were telling another designer to create something similar, including any repeating colors and materials and shapes and textures"},
{
"type": "image_url",
"image_url": {
"url": "data:image/jpeg;base64," + image_data,
},
},
],
}
],
max_tokens=300,
)
return response.choices[0].message.content
except openai.BadRequestError as e:
print(e)
print("e type")
print(type(e))
raise gr.Error(f"Please retry with a different moodboard file")
except Exception as e:
raise gr.Error("Unknown Error")
def image_classifier(moodboard, starter_image, image_strength, prompt):
raise gr.Error(header)
if moodboard is not None and starter_image is not None:
# Convert the numpy array to a PIL image
pil_image = Image.fromarray(moodboard.astype('uint8'))
starter_image_pil = Image.fromarray(starter_image.astype('uint8'))
# Resize the starter image if either dimension is larger than 768 pixels
if starter_image_pil.size[0] > 768 or starter_image_pil.size[1] > 768:
# Calculate the new size while maintaining the aspect ratio
if starter_image_pil.size[0] > starter_image_pil.size[1]:
# Width is larger than height
new_width = 768
new_height = int((768 / starter_image_pil.size[0]) * starter_image_pil.size[1])
else:
# Height is larger than width
new_height = 768
new_width = int((768 / starter_image_pil.size[1]) * starter_image_pil.size[0])
# Resize the image
starter_image_pil = starter_image_pil.resize((new_width, new_height), Image.LANCZOS)
#openai_response = call_openai(pil_image)
#openai_response = openai_response.replace('moodboard', '')
#openai_response = openai_response.replace('share', '')
#openai_response = openai_response.replace('unified', '')
# Save the starter image to a bytes buffer
buffered = io.BytesIO()
starter_image_pil.save(buffered, format="JPEG")
# Encode the starter image to base64
starter_image_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
else:
raise gr.Error(f"Please upload a moodboard to control image generation style")
# Call Stable Diffusion API with the response from OpenAI
input = {
"width": 768,
"height": 768,
"prompt": "high quality render of " + prompt + ", " + openai_response[12:],
"negative_prompt": "worst quality, low quality, illustration, 2d, painting, cartoons, sketch",
"refine": "expert_ensemble_refiner",
"image": "data:image/jpeg;base64," + starter_image_base64,
"apply_watermark": False,
"num_inference_steps": 25,
"prompt_strength": 1-image_strength,
"num_outputs": 3
}
output = replicate.run(
"stability-ai/sdxl:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc",
input=input
)
images = []
for i in range(min(len(output), 3)):
image_url = output[i]
response = requests.get(image_url)
images.append(Image.open(io.BytesIO(response.content)))
# Add empty images if fewer than 3 were returned
while len(images) < 3:
images.append(Image.new('RGB', (768, 768), 'gray'))
return images
header = "Set up APIs on HuggingFace or use free at https://app.idai.tools/ (https://app.idai.tools/interface/moodboard_controlled)"
demo = gr.Interface(fn=image_classifier, inputs=["image", "image", gr.Slider(0, 1, step=0.05, value=0.2, label="Image Strength"), "text"], outputs=["image", "image", "image"], title=header)
demo.launch(share=False)