import os import base64 import numpy as np from PIL import Image import io import requests import replicate from flask import Flask, request import gradio as gr import openai from openai import OpenAI from dotenv import load_dotenv, find_dotenv # Locate the .env file dotenv_path = find_dotenv() load_dotenv(dotenv_path) OPENAI_API_KEY = os.getenv('OPENAI_API_KEY') REPLICATE_API_TOKEN = os.getenv('REPLICATE_API_TOKEN') client = OpenAI() def call_openai(pil_image): # Save the PIL image to a bytes buffer buffered = io.BytesIO() pil_image.save(buffered, format="JPEG") # Encode the image to base64 image_data = base64.b64encode(buffered.getvalue()).decode('utf-8') try: response = client.chat.completions.create( model="gpt-4o", messages=[ { "role": "user", "content": [ {"type": "text", "text": "You are a product designer. I've attached a moodboard here. In one sentence, what do all of these elements have in common? Answer from a design language perspective, if you were telling another designer to create something similar, including any repeating colors and materials and shapes and textures"}, { "type": "image_url", "image_url": { "url": "data:image/jpeg;base64," + image_data, }, }, ], } ], max_tokens=300, ) return response.choices[0].message.content except openai.BadRequestError as e: print(e) print("e type") print(type(e)) raise gr.Error(f"Please retry with a different moodboard file") except Exception as e: raise gr.Error("Unknown Error") def image_classifier(moodboard, starter_image, image_strength, prompt): raise gr.Error(header) if moodboard is not None and starter_image is not None: # Convert the numpy array to a PIL image pil_image = Image.fromarray(moodboard.astype('uint8')) starter_image_pil = Image.fromarray(starter_image.astype('uint8')) # Resize the starter image if either dimension is larger than 768 pixels if starter_image_pil.size[0] > 768 or starter_image_pil.size[1] > 768: # Calculate the new size while maintaining the aspect ratio if starter_image_pil.size[0] > starter_image_pil.size[1]: # Width is larger than height new_width = 768 new_height = int((768 / starter_image_pil.size[0]) * starter_image_pil.size[1]) else: # Height is larger than width new_height = 768 new_width = int((768 / starter_image_pil.size[1]) * starter_image_pil.size[0]) # Resize the image starter_image_pil = starter_image_pil.resize((new_width, new_height), Image.LANCZOS) #openai_response = call_openai(pil_image) #openai_response = openai_response.replace('moodboard', '') #openai_response = openai_response.replace('share', '') #openai_response = openai_response.replace('unified', '') # Save the starter image to a bytes buffer buffered = io.BytesIO() starter_image_pil.save(buffered, format="JPEG") # Encode the starter image to base64 starter_image_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8') else: raise gr.Error(f"Please upload a moodboard to control image generation style") # Call Stable Diffusion API with the response from OpenAI input = { "width": 768, "height": 768, "prompt": "high quality render of " + prompt + ", " + openai_response[12:], "negative_prompt": "worst quality, low quality, illustration, 2d, painting, cartoons, sketch", "refine": "expert_ensemble_refiner", "image": "data:image/jpeg;base64," + starter_image_base64, "apply_watermark": False, "num_inference_steps": 25, "prompt_strength": 1-image_strength, "num_outputs": 3 } output = replicate.run( "stability-ai/sdxl:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc", input=input ) images = [] for i in range(min(len(output), 3)): image_url = output[i] response = requests.get(image_url) images.append(Image.open(io.BytesIO(response.content))) # Add empty images if fewer than 3 were returned while len(images) < 3: images.append(Image.new('RGB', (768, 768), 'gray')) return images header = "Set up APIs on HuggingFace or use free at https://app.idai.tools/ (https://app.idai.tools/interface/moodboard_controlled)" demo = gr.Interface(fn=image_classifier, inputs=["image", "image", gr.Slider(0, 1, step=0.05, value=0.2, label="Image Strength"), "text"], outputs=["image", "image", "image"], title=header) demo.launch(share=False)