Spaces:
Runtime error
Runtime error
File size: 1,271 Bytes
9e626b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import torch
import streamlit as st
from transformers.models.bart import BartForConditionalGeneration
from transformers import PreTrainedTokenizerFast
#@st.cache
@st.cache(allow_output_mutation=True)
def load_model():
#model = BartForConditionalGeneration.from_pretrained('logs/model_chp/epoch-6')
model = BartForConditionalGeneration.from_pretrained('LeeJang/news-summarization-v2')
# tokenizer = get_kobart_tokenizer()
return model
model = load_model()
tokenizer = PreTrainedTokenizerFast.from_pretrained('gogamza/kobart-base-v1')
st.title("2문장 뉴스 요약기")
text = st.text_area("뉴스 입력:")
st.markdown("## 뉴스 원문")
st.write(text)
#'''
if text:
text = text.replace('\n', ' ')
text = text.strip()
arr = text.split(' ')
if len(arr) > 501:
#print('!!!')
arr = arr[:501]
text = ' '.join(arr)
st.markdown("## 요약 결과")
with st.spinner('processing..'):
input_ids = tokenizer.encode(text)
input_ids = torch.tensor(input_ids)
input_ids = input_ids.unsqueeze(0)
output = model.generate(input_ids, eos_token_id=1, max_length=512, num_beams=5)
output = tokenizer.decode(output[0], skip_special_tokens=True)
st.write(output)
#'''
|