LeeJang commited on
Commit
9e626b9
1 Parent(s): 1064ff8

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +42 -0
  2. requirements.txt +3 -0
app.py ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import streamlit as st
3
+ from transformers.models.bart import BartForConditionalGeneration
4
+ from transformers import PreTrainedTokenizerFast
5
+
6
+ #@st.cache
7
+ @st.cache(allow_output_mutation=True)
8
+ def load_model():
9
+ #model = BartForConditionalGeneration.from_pretrained('logs/model_chp/epoch-6')
10
+ model = BartForConditionalGeneration.from_pretrained('LeeJang/news-summarization-v2')
11
+ # tokenizer = get_kobart_tokenizer()
12
+ return model
13
+
14
+ model = load_model()
15
+ tokenizer = PreTrainedTokenizerFast.from_pretrained('gogamza/kobart-base-v1')
16
+ st.title("2문장 뉴스 요약기")
17
+ text = st.text_area("뉴스 입력:")
18
+
19
+ st.markdown("## 뉴스 원문")
20
+ st.write(text)
21
+
22
+ #'''
23
+ if text:
24
+ text = text.replace('\n', ' ')
25
+ text = text.strip()
26
+
27
+ arr = text.split(' ')
28
+
29
+ if len(arr) > 501:
30
+ #print('!!!')
31
+ arr = arr[:501]
32
+ text = ' '.join(arr)
33
+
34
+ st.markdown("## 요약 결과")
35
+ with st.spinner('processing..'):
36
+ input_ids = tokenizer.encode(text)
37
+ input_ids = torch.tensor(input_ids)
38
+ input_ids = input_ids.unsqueeze(0)
39
+ output = model.generate(input_ids, eos_token_id=1, max_length=512, num_beams=5)
40
+ output = tokenizer.decode(output[0], skip_special_tokens=True)
41
+ st.write(output)
42
+ #'''
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ torch
2
+ transformers
3
+ streamlit