Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import Optional, Tuple, TypeVar, Union | |
import cv2 | |
import numpy as np | |
import torch | |
from torch import BoolTensor, Tensor | |
from mmdet.structures.mask.structures import BitmapMasks, PolygonMasks | |
from .base_boxes import BaseBoxes | |
from .bbox_overlaps import bbox_overlaps | |
from .box_type import register_box | |
T = TypeVar('T') | |
DeviceType = Union[str, torch.device] | |
MaskType = Union[BitmapMasks, PolygonMasks] | |
class HorizontalBoxes(BaseBoxes): | |
"""The horizontal box class used in MMDetection by default. | |
The ``box_dim`` of ``HorizontalBoxes`` is 4, which means the length of | |
the last dimension of the data should be 4. Two modes of box data are | |
supported in ``HorizontalBoxes``: | |
- 'xyxy': Each row of data indicates (x1, y1, x2, y2), which are the | |
coordinates of the left-top and right-bottom points. | |
- 'cxcywh': Each row of data indicates (x, y, w, h), where (x, y) are the | |
coordinates of the box centers and (w, h) are the width and height. | |
``HorizontalBoxes`` only restores 'xyxy' mode of data. If the the data is | |
in 'cxcywh' mode, users need to input ``in_mode='cxcywh'`` and The code | |
will convert the 'cxcywh' data to 'xyxy' automatically. | |
Args: | |
data (Tensor or np.ndarray or Sequence): The box data with shape of | |
(..., 4). | |
dtype (torch.dtype, Optional): data type of boxes. Defaults to None. | |
device (str or torch.device, Optional): device of boxes. | |
Default to None. | |
clone (bool): Whether clone ``boxes`` or not. Defaults to True. | |
mode (str, Optional): the mode of boxes. If it is 'cxcywh', the | |
`data` will be converted to 'xyxy' mode. Defaults to None. | |
""" | |
box_dim: int = 4 | |
def __init__(self, | |
data: Union[Tensor, np.ndarray], | |
dtype: torch.dtype = None, | |
device: DeviceType = None, | |
clone: bool = True, | |
in_mode: Optional[str] = None) -> None: | |
super().__init__(data=data, dtype=dtype, device=device, clone=clone) | |
if isinstance(in_mode, str): | |
if in_mode not in ('xyxy', 'cxcywh'): | |
raise ValueError(f'Get invalid mode {in_mode}.') | |
if in_mode == 'cxcywh': | |
self.tensor = self.cxcywh_to_xyxy(self.tensor) | |
def cxcywh_to_xyxy(boxes: Tensor) -> Tensor: | |
"""Convert box coordinates from (cx, cy, w, h) to (x1, y1, x2, y2). | |
Args: | |
boxes (Tensor): cxcywh boxes tensor with shape of (..., 4). | |
Returns: | |
Tensor: xyxy boxes tensor with shape of (..., 4). | |
""" | |
ctr, wh = boxes.split((2, 2), dim=-1) | |
return torch.cat([(ctr - wh / 2), (ctr + wh / 2)], dim=-1) | |
def xyxy_to_cxcywh(boxes: Tensor) -> Tensor: | |
"""Convert box coordinates from (x1, y1, x2, y2) to (cx, cy, w, h). | |
Args: | |
boxes (Tensor): xyxy boxes tensor with shape of (..., 4). | |
Returns: | |
Tensor: cxcywh boxes tensor with shape of (..., 4). | |
""" | |
xy1, xy2 = boxes.split((2, 2), dim=-1) | |
return torch.cat([(xy2 + xy1) / 2, (xy2 - xy1)], dim=-1) | |
def cxcywh(self) -> Tensor: | |
"""Return a tensor representing the cxcywh boxes.""" | |
return self.xyxy_to_cxcywh(self.tensor) | |
def centers(self) -> Tensor: | |
"""Return a tensor representing the centers of boxes.""" | |
boxes = self.tensor | |
return (boxes[..., :2] + boxes[..., 2:]) / 2 | |
def areas(self) -> Tensor: | |
"""Return a tensor representing the areas of boxes.""" | |
boxes = self.tensor | |
return (boxes[..., 2] - boxes[..., 0]) * ( | |
boxes[..., 3] - boxes[..., 1]) | |
def widths(self) -> Tensor: | |
"""Return a tensor representing the widths of boxes.""" | |
boxes = self.tensor | |
return boxes[..., 2] - boxes[..., 0] | |
def heights(self) -> Tensor: | |
"""Return a tensor representing the heights of boxes.""" | |
boxes = self.tensor | |
return boxes[..., 3] - boxes[..., 1] | |
def flip_(self, | |
img_shape: Tuple[int, int], | |
direction: str = 'horizontal') -> None: | |
"""Flip boxes horizontally or vertically in-place. | |
Args: | |
img_shape (Tuple[int, int]): A tuple of image height and width. | |
direction (str): Flip direction, options are "horizontal", | |
"vertical" and "diagonal". Defaults to "horizontal" | |
""" | |
assert direction in ['horizontal', 'vertical', 'diagonal'] | |
flipped = self.tensor | |
boxes = flipped.clone() | |
if direction == 'horizontal': | |
flipped[..., 0] = img_shape[1] - boxes[..., 2] | |
flipped[..., 2] = img_shape[1] - boxes[..., 0] | |
elif direction == 'vertical': | |
flipped[..., 1] = img_shape[0] - boxes[..., 3] | |
flipped[..., 3] = img_shape[0] - boxes[..., 1] | |
else: | |
flipped[..., 0] = img_shape[1] - boxes[..., 2] | |
flipped[..., 1] = img_shape[0] - boxes[..., 3] | |
flipped[..., 2] = img_shape[1] - boxes[..., 0] | |
flipped[..., 3] = img_shape[0] - boxes[..., 1] | |
def translate_(self, distances: Tuple[float, float]) -> None: | |
"""Translate boxes in-place. | |
Args: | |
distances (Tuple[float, float]): translate distances. The first | |
is horizontal distance and the second is vertical distance. | |
""" | |
boxes = self.tensor | |
assert len(distances) == 2 | |
self.tensor = boxes + boxes.new_tensor(distances).repeat(2) | |
def clip_(self, img_shape: Tuple[int, int]) -> None: | |
"""Clip boxes according to the image shape in-place. | |
Args: | |
img_shape (Tuple[int, int]): A tuple of image height and width. | |
""" | |
boxes = self.tensor | |
boxes[..., 0::2] = boxes[..., 0::2].clamp(0, img_shape[1]) | |
boxes[..., 1::2] = boxes[..., 1::2].clamp(0, img_shape[0]) | |
def rotate_(self, center: Tuple[float, float], angle: float) -> None: | |
"""Rotate all boxes in-place. | |
Args: | |
center (Tuple[float, float]): Rotation origin. | |
angle (float): Rotation angle represented in degrees. Positive | |
values mean clockwise rotation. | |
""" | |
boxes = self.tensor | |
rotation_matrix = boxes.new_tensor( | |
cv2.getRotationMatrix2D(center, -angle, 1)) | |
corners = self.hbox2corner(boxes) | |
corners = torch.cat( | |
[corners, corners.new_ones(*corners.shape[:-1], 1)], dim=-1) | |
corners_T = torch.transpose(corners, -1, -2) | |
corners_T = torch.matmul(rotation_matrix, corners_T) | |
corners = torch.transpose(corners_T, -1, -2) | |
self.tensor = self.corner2hbox(corners) | |
def project_(self, homography_matrix: Union[Tensor, np.ndarray]) -> None: | |
"""Geometric transformat boxes in-place. | |
Args: | |
homography_matrix (Tensor or np.ndarray]): | |
Shape (3, 3) for geometric transformation. | |
""" | |
boxes = self.tensor | |
if isinstance(homography_matrix, np.ndarray): | |
homography_matrix = boxes.new_tensor(homography_matrix) | |
corners = self.hbox2corner(boxes) | |
corners = torch.cat( | |
[corners, corners.new_ones(*corners.shape[:-1], 1)], dim=-1) | |
corners_T = torch.transpose(corners, -1, -2) | |
corners_T = torch.matmul(homography_matrix, corners_T) | |
corners = torch.transpose(corners_T, -1, -2) | |
# Convert to homogeneous coordinates by normalization | |
corners = corners[..., :2] / corners[..., 2:3] | |
self.tensor = self.corner2hbox(corners) | |
def hbox2corner(boxes: Tensor) -> Tensor: | |
"""Convert box coordinates from (x1, y1, x2, y2) to corners ((x1, y1), | |
(x2, y1), (x1, y2), (x2, y2)). | |
Args: | |
boxes (Tensor): Horizontal box tensor with shape of (..., 4). | |
Returns: | |
Tensor: Corner tensor with shape of (..., 4, 2). | |
""" | |
x1, y1, x2, y2 = torch.split(boxes, 1, dim=-1) | |
corners = torch.cat([x1, y1, x2, y1, x1, y2, x2, y2], dim=-1) | |
return corners.reshape(*corners.shape[:-1], 4, 2) | |
def corner2hbox(corners: Tensor) -> Tensor: | |
"""Convert box coordinates from corners ((x1, y1), (x2, y1), (x1, y2), | |
(x2, y2)) to (x1, y1, x2, y2). | |
Args: | |
corners (Tensor): Corner tensor with shape of (..., 4, 2). | |
Returns: | |
Tensor: Horizontal box tensor with shape of (..., 4). | |
""" | |
if corners.numel() == 0: | |
return corners.new_zeros((0, 4)) | |
min_xy = corners.min(dim=-2)[0] | |
max_xy = corners.max(dim=-2)[0] | |
return torch.cat([min_xy, max_xy], dim=-1) | |
def rescale_(self, scale_factor: Tuple[float, float]) -> None: | |
"""Rescale boxes w.r.t. rescale_factor in-place. | |
Note: | |
Both ``rescale_`` and ``resize_`` will enlarge or shrink boxes | |
w.r.t ``scale_facotr``. The difference is that ``resize_`` only | |
changes the width and the height of boxes, but ``rescale_`` also | |
rescales the box centers simultaneously. | |
Args: | |
scale_factor (Tuple[float, float]): factors for scaling boxes. | |
The length should be 2. | |
""" | |
boxes = self.tensor | |
assert len(scale_factor) == 2 | |
scale_factor = boxes.new_tensor(scale_factor).repeat(2) | |
self.tensor = boxes * scale_factor | |
def resize_(self, scale_factor: Tuple[float, float]) -> None: | |
"""Resize the box width and height w.r.t scale_factor in-place. | |
Note: | |
Both ``rescale_`` and ``resize_`` will enlarge or shrink boxes | |
w.r.t ``scale_facotr``. The difference is that ``resize_`` only | |
changes the width and the height of boxes, but ``rescale_`` also | |
rescales the box centers simultaneously. | |
Args: | |
scale_factor (Tuple[float, float]): factors for scaling box | |
shapes. The length should be 2. | |
""" | |
boxes = self.tensor | |
assert len(scale_factor) == 2 | |
ctrs = (boxes[..., 2:] + boxes[..., :2]) / 2 | |
wh = boxes[..., 2:] - boxes[..., :2] | |
scale_factor = boxes.new_tensor(scale_factor) | |
wh = wh * scale_factor | |
xy1 = ctrs - 0.5 * wh | |
xy2 = ctrs + 0.5 * wh | |
self.tensor = torch.cat([xy1, xy2], dim=-1) | |
def is_inside(self, | |
img_shape: Tuple[int, int], | |
all_inside: bool = False, | |
allowed_border: int = 0) -> BoolTensor: | |
"""Find boxes inside the image. | |
Args: | |
img_shape (Tuple[int, int]): A tuple of image height and width. | |
all_inside (bool): Whether the boxes are all inside the image or | |
part inside the image. Defaults to False. | |
allowed_border (int): Boxes that extend beyond the image shape | |
boundary by more than ``allowed_border`` are considered | |
"outside" Defaults to 0. | |
Returns: | |
BoolTensor: A BoolTensor indicating whether the box is inside | |
the image. Assuming the original boxes have shape (m, n, 4), | |
the output has shape (m, n). | |
""" | |
img_h, img_w = img_shape | |
boxes = self.tensor | |
if all_inside: | |
return (boxes[:, 0] >= -allowed_border) & \ | |
(boxes[:, 1] >= -allowed_border) & \ | |
(boxes[:, 2] < img_w + allowed_border) & \ | |
(boxes[:, 3] < img_h + allowed_border) | |
else: | |
return (boxes[..., 0] < img_w + allowed_border) & \ | |
(boxes[..., 1] < img_h + allowed_border) & \ | |
(boxes[..., 2] > -allowed_border) & \ | |
(boxes[..., 3] > -allowed_border) | |
def find_inside_points(self, | |
points: Tensor, | |
is_aligned: bool = False) -> BoolTensor: | |
"""Find inside box points. Boxes dimension must be 2. | |
Args: | |
points (Tensor): Points coordinates. Has shape of (m, 2). | |
is_aligned (bool): Whether ``points`` has been aligned with boxes | |
or not. If True, the length of boxes and ``points`` should be | |
the same. Defaults to False. | |
Returns: | |
BoolTensor: A BoolTensor indicating whether a point is inside | |
boxes. Assuming the boxes has shape of (n, 4), if ``is_aligned`` | |
is False. The index has shape of (m, n). If ``is_aligned`` is | |
True, m should be equal to n and the index has shape of (m, ). | |
""" | |
boxes = self.tensor | |
assert boxes.dim() == 2, 'boxes dimension must be 2.' | |
if not is_aligned: | |
boxes = boxes[None, :, :] | |
points = points[:, None, :] | |
else: | |
assert boxes.size(0) == points.size(0) | |
x_min, y_min, x_max, y_max = boxes.unbind(dim=-1) | |
return (points[..., 0] >= x_min) & (points[..., 0] <= x_max) & \ | |
(points[..., 1] >= y_min) & (points[..., 1] <= y_max) | |
def overlaps(boxes1: BaseBoxes, | |
boxes2: BaseBoxes, | |
mode: str = 'iou', | |
is_aligned: bool = False, | |
eps: float = 1e-6) -> Tensor: | |
"""Calculate overlap between two set of boxes with their types | |
converted to ``HorizontalBoxes``. | |
Args: | |
boxes1 (:obj:`BaseBoxes`): BaseBoxes with shape of (m, box_dim) | |
or empty. | |
boxes2 (:obj:`BaseBoxes`): BaseBoxes with shape of (n, box_dim) | |
or empty. | |
mode (str): "iou" (intersection over union), "iof" (intersection | |
over foreground). Defaults to "iou". | |
is_aligned (bool): If True, then m and n must be equal. Defaults | |
to False. | |
eps (float): A value added to the denominator for numerical | |
stability. Defaults to 1e-6. | |
Returns: | |
Tensor: shape (m, n) if ``is_aligned`` is False else shape (m,) | |
""" | |
boxes1 = boxes1.convert_to('hbox') | |
boxes2 = boxes2.convert_to('hbox') | |
return bbox_overlaps( | |
boxes1.tensor, | |
boxes2.tensor, | |
mode=mode, | |
is_aligned=is_aligned, | |
eps=eps) | |
def from_instance_masks(masks: MaskType) -> 'HorizontalBoxes': | |
"""Create horizontal boxes from instance masks. | |
Args: | |
masks (:obj:`BitmapMasks` or :obj:`PolygonMasks`): BitmapMasks or | |
PolygonMasks instance with length of n. | |
Returns: | |
:obj:`HorizontalBoxes`: Converted boxes with shape of (n, 4). | |
""" | |
num_masks = len(masks) | |
boxes = np.zeros((num_masks, 4), dtype=np.float32) | |
if isinstance(masks, BitmapMasks): | |
x_any = masks.masks.any(axis=1) | |
y_any = masks.masks.any(axis=2) | |
for idx in range(num_masks): | |
x = np.where(x_any[idx, :])[0] | |
y = np.where(y_any[idx, :])[0] | |
if len(x) > 0 and len(y) > 0: | |
# use +1 for x_max and y_max so that the right and bottom | |
# boundary of instance masks are fully included by the box | |
boxes[idx, :] = np.array( | |
[x[0], y[0], x[-1] + 1, y[-1] + 1], dtype=np.float32) | |
elif isinstance(masks, PolygonMasks): | |
for idx, poly_per_obj in enumerate(masks.masks): | |
# simply use a number that is big enough for comparison with | |
# coordinates | |
xy_min = np.array([masks.width * 2, masks.height * 2], | |
dtype=np.float32) | |
xy_max = np.zeros(2, dtype=np.float32) | |
for p in poly_per_obj: | |
xy = np.array(p).reshape(-1, 2).astype(np.float32) | |
xy_min = np.minimum(xy_min, np.min(xy, axis=0)) | |
xy_max = np.maximum(xy_max, np.max(xy, axis=0)) | |
boxes[idx, :2] = xy_min | |
boxes[idx, 2:] = xy_max | |
else: | |
raise TypeError( | |
'`masks` must be `BitmapMasks` or `PolygonMasks`, ' | |
f'but got {type(masks)}.') | |
return HorizontalBoxes(boxes) | |