KyanChen's picture
init
f549064
raw
history blame contribute delete
No virus
20.9 kB
# Copyright (c) OpenMMLab. All rights reserved.
from abc import ABCMeta, abstractmethod, abstractproperty, abstractstaticmethod
from typing import List, Optional, Sequence, Tuple, Type, TypeVar, Union
import numpy as np
import torch
from torch import BoolTensor, Tensor
from mmdet.structures.mask.structures import BitmapMasks, PolygonMasks
T = TypeVar('T')
DeviceType = Union[str, torch.device]
IndexType = Union[slice, int, list, torch.LongTensor, torch.cuda.LongTensor,
torch.BoolTensor, torch.cuda.BoolTensor, np.ndarray]
MaskType = Union[BitmapMasks, PolygonMasks]
class BaseBoxes(metaclass=ABCMeta):
"""The base class for 2D box types.
The functions of ``BaseBoxes`` lie in three fields:
- Verify the boxes shape.
- Support tensor-like operations.
- Define abstract functions for 2D boxes.
In ``__init__`` , ``BaseBoxes`` verifies the validity of the data shape
w.r.t ``box_dim``. The tensor with the dimension >= 2 and the length
of the last dimension being ``box_dim`` will be regarded as valid.
``BaseBoxes`` will restore them at the field ``tensor``. It's necessary
to override ``box_dim`` in subclass to guarantee the data shape is
correct.
There are many basic tensor-like functions implemented in ``BaseBoxes``.
In most cases, users can operate ``BaseBoxes`` instance like a normal
tensor. To protect the validity of data shape, All tensor-like functions
cannot modify the last dimension of ``self.tensor``.
When creating a new box type, users need to inherit from ``BaseBoxes``
and override abstract methods and specify the ``box_dim``. Then, register
the new box type by using the decorator ``register_box_type``.
Args:
data (Tensor or np.ndarray or Sequence): The box data with shape
(..., box_dim).
dtype (torch.dtype, Optional): data type of boxes. Defaults to None.
device (str or torch.device, Optional): device of boxes.
Default to None.
clone (bool): Whether clone ``boxes`` or not. Defaults to True.
"""
# Used to verify the last dimension length
# Should override it in subclass.
box_dim: int = 0
def __init__(self,
data: Union[Tensor, np.ndarray, Sequence],
dtype: Optional[torch.dtype] = None,
device: Optional[DeviceType] = None,
clone: bool = True) -> None:
if isinstance(data, (np.ndarray, Tensor, Sequence)):
data = torch.as_tensor(data)
else:
raise TypeError('boxes should be Tensor, ndarray, or Sequence, ',
f'but got {type(data)}')
if device is not None or dtype is not None:
data = data.to(dtype=dtype, device=device)
# Clone the data to avoid potential bugs
if clone:
data = data.clone()
# handle the empty input like []
if data.numel() == 0:
data = data.reshape((-1, self.box_dim))
assert data.dim() >= 2 and data.size(-1) == self.box_dim, \
('The boxes dimension must >= 2 and the length of the last '
f'dimension must be {self.box_dim}, but got boxes with '
f'shape {data.shape}.')
self.tensor = data
def convert_to(self, dst_type: Union[str, type]) -> 'BaseBoxes':
"""Convert self to another box type.
Args:
dst_type (str or type): destination box type.
Returns:
:obj:`BaseBoxes`: destination box type object .
"""
from .box_type import convert_box_type
return convert_box_type(self, dst_type=dst_type)
def empty_boxes(self: T,
dtype: Optional[torch.dtype] = None,
device: Optional[DeviceType] = None) -> T:
"""Create empty box.
Args:
dtype (torch.dtype, Optional): data type of boxes.
device (str or torch.device, Optional): device of boxes.
Returns:
T: empty boxes with shape of (0, box_dim).
"""
empty_box = self.tensor.new_zeros(
0, self.box_dim, dtype=dtype, device=device)
return type(self)(empty_box, clone=False)
def fake_boxes(self: T,
sizes: Tuple[int],
fill: float = 0,
dtype: Optional[torch.dtype] = None,
device: Optional[DeviceType] = None) -> T:
"""Create fake boxes with specific sizes and fill values.
Args:
sizes (Tuple[int]): The size of fake boxes. The last value must
be equal with ``self.box_dim``.
fill (float): filling value. Defaults to 0.
dtype (torch.dtype, Optional): data type of boxes.
device (str or torch.device, Optional): device of boxes.
Returns:
T: Fake boxes with shape of ``sizes``.
"""
fake_boxes = self.tensor.new_full(
sizes, fill, dtype=dtype, device=device)
return type(self)(fake_boxes, clone=False)
def __getitem__(self: T, index: IndexType) -> T:
"""Rewrite getitem to protect the last dimension shape."""
boxes = self.tensor
if isinstance(index, np.ndarray):
index = torch.as_tensor(index, device=self.device)
if isinstance(index, Tensor) and index.dtype == torch.bool:
assert index.dim() < boxes.dim()
elif isinstance(index, tuple):
assert len(index) < boxes.dim()
# `Ellipsis`(...) is commonly used in index like [None, ...].
# When `Ellipsis` is in index, it must be the last item.
if Ellipsis in index:
assert index[-1] is Ellipsis
boxes = boxes[index]
if boxes.dim() == 1:
boxes = boxes.reshape(1, -1)
return type(self)(boxes, clone=False)
def __setitem__(self: T, index: IndexType, values: Union[Tensor, T]) -> T:
"""Rewrite setitem to protect the last dimension shape."""
assert type(values) is type(self), \
'The value to be set must be the same box type as self'
values = values.tensor
if isinstance(index, np.ndarray):
index = torch.as_tensor(index, device=self.device)
if isinstance(index, Tensor) and index.dtype == torch.bool:
assert index.dim() < self.tensor.dim()
elif isinstance(index, tuple):
assert len(index) < self.tensor.dim()
# `Ellipsis`(...) is commonly used in index like [None, ...].
# When `Ellipsis` is in index, it must be the last item.
if Ellipsis in index:
assert index[-1] is Ellipsis
self.tensor[index] = values
def __len__(self) -> int:
"""Return the length of self.tensor first dimension."""
return self.tensor.size(0)
def __deepcopy__(self, memo):
"""Only clone the ``self.tensor`` when applying deepcopy."""
cls = self.__class__
other = cls.__new__(cls)
memo[id(self)] = other
other.tensor = self.tensor.clone()
return other
def __repr__(self) -> str:
"""Return a strings that describes the object."""
return self.__class__.__name__ + '(\n' + str(self.tensor) + ')'
def new_tensor(self, *args, **kwargs) -> Tensor:
"""Reload ``new_tensor`` from self.tensor."""
return self.tensor.new_tensor(*args, **kwargs)
def new_full(self, *args, **kwargs) -> Tensor:
"""Reload ``new_full`` from self.tensor."""
return self.tensor.new_full(*args, **kwargs)
def new_empty(self, *args, **kwargs) -> Tensor:
"""Reload ``new_empty`` from self.tensor."""
return self.tensor.new_empty(*args, **kwargs)
def new_ones(self, *args, **kwargs) -> Tensor:
"""Reload ``new_ones`` from self.tensor."""
return self.tensor.new_ones(*args, **kwargs)
def new_zeros(self, *args, **kwargs) -> Tensor:
"""Reload ``new_zeros`` from self.tensor."""
return self.tensor.new_zeros(*args, **kwargs)
def size(self, dim: Optional[int] = None) -> Union[int, torch.Size]:
"""Reload new_zeros from self.tensor."""
# self.tensor.size(dim) cannot work when dim=None.
return self.tensor.size() if dim is None else self.tensor.size(dim)
def dim(self) -> int:
"""Reload ``dim`` from self.tensor."""
return self.tensor.dim()
@property
def device(self) -> torch.device:
"""Reload ``device`` from self.tensor."""
return self.tensor.device
@property
def dtype(self) -> torch.dtype:
"""Reload ``dtype`` from self.tensor."""
return self.tensor.dtype
@property
def shape(self) -> torch.Size:
return self.tensor.shape
def numel(self) -> int:
"""Reload ``numel`` from self.tensor."""
return self.tensor.numel()
def numpy(self) -> np.ndarray:
"""Reload ``numpy`` from self.tensor."""
return self.tensor.numpy()
def to(self: T, *args, **kwargs) -> T:
"""Reload ``to`` from self.tensor."""
return type(self)(self.tensor.to(*args, **kwargs), clone=False)
def cpu(self: T) -> T:
"""Reload ``cpu`` from self.tensor."""
return type(self)(self.tensor.cpu(), clone=False)
def cuda(self: T, *args, **kwargs) -> T:
"""Reload ``cuda`` from self.tensor."""
return type(self)(self.tensor.cuda(*args, **kwargs), clone=False)
def clone(self: T) -> T:
"""Reload ``clone`` from self.tensor."""
return type(self)(self.tensor)
def detach(self: T) -> T:
"""Reload ``detach`` from self.tensor."""
return type(self)(self.tensor.detach(), clone=False)
def view(self: T, *shape: Tuple[int]) -> T:
"""Reload ``view`` from self.tensor."""
return type(self)(self.tensor.view(shape), clone=False)
def reshape(self: T, *shape: Tuple[int]) -> T:
"""Reload ``reshape`` from self.tensor."""
return type(self)(self.tensor.reshape(shape), clone=False)
def expand(self: T, *sizes: Tuple[int]) -> T:
"""Reload ``expand`` from self.tensor."""
return type(self)(self.tensor.expand(sizes), clone=False)
def repeat(self: T, *sizes: Tuple[int]) -> T:
"""Reload ``repeat`` from self.tensor."""
return type(self)(self.tensor.repeat(sizes), clone=False)
def transpose(self: T, dim0: int, dim1: int) -> T:
"""Reload ``transpose`` from self.tensor."""
ndim = self.tensor.dim()
assert dim0 != -1 and dim0 != ndim - 1
assert dim1 != -1 and dim1 != ndim - 1
return type(self)(self.tensor.transpose(dim0, dim1), clone=False)
def permute(self: T, *dims: Tuple[int]) -> T:
"""Reload ``permute`` from self.tensor."""
assert dims[-1] == -1 or dims[-1] == self.tensor.dim() - 1
return type(self)(self.tensor.permute(dims), clone=False)
def split(self: T,
split_size_or_sections: Union[int, Sequence[int]],
dim: int = 0) -> List[T]:
"""Reload ``split`` from self.tensor."""
assert dim != -1 and dim != self.tensor.dim() - 1
boxes_list = self.tensor.split(split_size_or_sections, dim=dim)
return [type(self)(boxes, clone=False) for boxes in boxes_list]
def chunk(self: T, chunks: int, dim: int = 0) -> List[T]:
"""Reload ``chunk`` from self.tensor."""
assert dim != -1 and dim != self.tensor.dim() - 1
boxes_list = self.tensor.chunk(chunks, dim=dim)
return [type(self)(boxes, clone=False) for boxes in boxes_list]
def unbind(self: T, dim: int = 0) -> T:
"""Reload ``unbind`` from self.tensor."""
assert dim != -1 and dim != self.tensor.dim() - 1
boxes_list = self.tensor.unbind(dim=dim)
return [type(self)(boxes, clone=False) for boxes in boxes_list]
def flatten(self: T, start_dim: int = 0, end_dim: int = -2) -> T:
"""Reload ``flatten`` from self.tensor."""
assert end_dim != -1 and end_dim != self.tensor.dim() - 1
return type(self)(self.tensor.flatten(start_dim, end_dim), clone=False)
def squeeze(self: T, dim: Optional[int] = None) -> T:
"""Reload ``squeeze`` from self.tensor."""
boxes = self.tensor.squeeze() if dim is None else \
self.tensor.squeeze(dim)
return type(self)(boxes, clone=False)
def unsqueeze(self: T, dim: int) -> T:
"""Reload ``unsqueeze`` from self.tensor."""
assert dim != -1 and dim != self.tensor.dim()
return type(self)(self.tensor.unsqueeze(dim), clone=False)
@classmethod
def cat(cls: Type[T], box_list: Sequence[T], dim: int = 0) -> T:
"""Cancatenates a box instance list into one single box instance.
Similar to ``torch.cat``.
Args:
box_list (Sequence[T]): A sequence of box instances.
dim (int): The dimension over which the box are concatenated.
Defaults to 0.
Returns:
T: Concatenated box instance.
"""
assert isinstance(box_list, Sequence)
if len(box_list) == 0:
raise ValueError('box_list should not be a empty list.')
assert dim != -1 and dim != box_list[0].dim() - 1
assert all(isinstance(boxes, cls) for boxes in box_list)
th_box_list = [boxes.tensor for boxes in box_list]
return cls(torch.cat(th_box_list, dim=dim), clone=False)
@classmethod
def stack(cls: Type[T], box_list: Sequence[T], dim: int = 0) -> T:
"""Concatenates a sequence of tensors along a new dimension. Similar to
``torch.stack``.
Args:
box_list (Sequence[T]): A sequence of box instances.
dim (int): Dimension to insert. Defaults to 0.
Returns:
T: Concatenated box instance.
"""
assert isinstance(box_list, Sequence)
if len(box_list) == 0:
raise ValueError('box_list should not be a empty list.')
assert dim != -1 and dim != box_list[0].dim()
assert all(isinstance(boxes, cls) for boxes in box_list)
th_box_list = [boxes.tensor for boxes in box_list]
return cls(torch.stack(th_box_list, dim=dim), clone=False)
@abstractproperty
def centers(self) -> Tensor:
"""Return a tensor representing the centers of boxes."""
pass
@abstractproperty
def areas(self) -> Tensor:
"""Return a tensor representing the areas of boxes."""
pass
@abstractproperty
def widths(self) -> Tensor:
"""Return a tensor representing the widths of boxes."""
pass
@abstractproperty
def heights(self) -> Tensor:
"""Return a tensor representing the heights of boxes."""
pass
@abstractmethod
def flip_(self,
img_shape: Tuple[int, int],
direction: str = 'horizontal') -> None:
"""Flip boxes horizontally or vertically in-place.
Args:
img_shape (Tuple[int, int]): A tuple of image height and width.
direction (str): Flip direction, options are "horizontal",
"vertical" and "diagonal". Defaults to "horizontal"
"""
pass
@abstractmethod
def translate_(self, distances: Tuple[float, float]) -> None:
"""Translate boxes in-place.
Args:
distances (Tuple[float, float]): translate distances. The first
is horizontal distance and the second is vertical distance.
"""
pass
@abstractmethod
def clip_(self, img_shape: Tuple[int, int]) -> None:
"""Clip boxes according to the image shape in-place.
Args:
img_shape (Tuple[int, int]): A tuple of image height and width.
"""
pass
@abstractmethod
def rotate_(self, center: Tuple[float, float], angle: float) -> None:
"""Rotate all boxes in-place.
Args:
center (Tuple[float, float]): Rotation origin.
angle (float): Rotation angle represented in degrees. Positive
values mean clockwise rotation.
"""
pass
@abstractmethod
def project_(self, homography_matrix: Union[Tensor, np.ndarray]) -> None:
"""Geometric transformat boxes in-place.
Args:
homography_matrix (Tensor or np.ndarray]):
Shape (3, 3) for geometric transformation.
"""
pass
@abstractmethod
def rescale_(self, scale_factor: Tuple[float, float]) -> None:
"""Rescale boxes w.r.t. rescale_factor in-place.
Note:
Both ``rescale_`` and ``resize_`` will enlarge or shrink boxes
w.r.t ``scale_facotr``. The difference is that ``resize_`` only
changes the width and the height of boxes, but ``rescale_`` also
rescales the box centers simultaneously.
Args:
scale_factor (Tuple[float, float]): factors for scaling boxes.
The length should be 2.
"""
pass
@abstractmethod
def resize_(self, scale_factor: Tuple[float, float]) -> None:
"""Resize the box width and height w.r.t scale_factor in-place.
Note:
Both ``rescale_`` and ``resize_`` will enlarge or shrink boxes
w.r.t ``scale_facotr``. The difference is that ``resize_`` only
changes the width and the height of boxes, but ``rescale_`` also
rescales the box centers simultaneously.
Args:
scale_factor (Tuple[float, float]): factors for scaling box
shapes. The length should be 2.
"""
pass
@abstractmethod
def is_inside(self,
img_shape: Tuple[int, int],
all_inside: bool = False,
allowed_border: int = 0) -> BoolTensor:
"""Find boxes inside the image.
Args:
img_shape (Tuple[int, int]): A tuple of image height and width.
all_inside (bool): Whether the boxes are all inside the image or
part inside the image. Defaults to False.
allowed_border (int): Boxes that extend beyond the image shape
boundary by more than ``allowed_border`` are considered
"outside" Defaults to 0.
Returns:
BoolTensor: A BoolTensor indicating whether the box is inside
the image. Assuming the original boxes have shape (m, n, box_dim),
the output has shape (m, n).
"""
pass
@abstractmethod
def find_inside_points(self,
points: Tensor,
is_aligned: bool = False) -> BoolTensor:
"""Find inside box points. Boxes dimension must be 2.
Args:
points (Tensor): Points coordinates. Has shape of (m, 2).
is_aligned (bool): Whether ``points`` has been aligned with boxes
or not. If True, the length of boxes and ``points`` should be
the same. Defaults to False.
Returns:
BoolTensor: A BoolTensor indicating whether a point is inside
boxes. Assuming the boxes has shape of (n, box_dim), if
``is_aligned`` is False. The index has shape of (m, n). If
``is_aligned`` is True, m should be equal to n and the index has
shape of (m, ).
"""
pass
@abstractstaticmethod
def overlaps(boxes1: 'BaseBoxes',
boxes2: 'BaseBoxes',
mode: str = 'iou',
is_aligned: bool = False,
eps: float = 1e-6) -> Tensor:
"""Calculate overlap between two set of boxes with their types
converted to the present box type.
Args:
boxes1 (:obj:`BaseBoxes`): BaseBoxes with shape of (m, box_dim)
or empty.
boxes2 (:obj:`BaseBoxes`): BaseBoxes with shape of (n, box_dim)
or empty.
mode (str): "iou" (intersection over union), "iof" (intersection
over foreground). Defaults to "iou".
is_aligned (bool): If True, then m and n must be equal. Defaults
to False.
eps (float): A value added to the denominator for numerical
stability. Defaults to 1e-6.
Returns:
Tensor: shape (m, n) if ``is_aligned`` is False else shape (m,)
"""
pass
@abstractstaticmethod
def from_instance_masks(masks: MaskType) -> 'BaseBoxes':
"""Create boxes from instance masks.
Args:
masks (:obj:`BitmapMasks` or :obj:`PolygonMasks`): BitmapMasks or
PolygonMasks instance with length of n.
Returns:
:obj:`BaseBoxes`: Converted boxes with shape of (n, box_dim).
"""
pass