Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import copy | |
import warnings | |
from typing import List, Optional, Union | |
import numpy as np | |
import torch | |
from mmcv.ops import nms | |
from mmengine.config import ConfigDict | |
from torch import Tensor | |
from mmdet.structures.bbox import bbox_mapping_back | |
# TODO remove this, never be used in mmdet | |
def merge_aug_proposals(aug_proposals, img_metas, cfg): | |
"""Merge augmented proposals (multiscale, flip, etc.) | |
Args: | |
aug_proposals (list[Tensor]): proposals from different testing | |
schemes, shape (n, 5). Note that they are not rescaled to the | |
original image size. | |
img_metas (list[dict]): list of image info dict where each dict has: | |
'img_shape', 'scale_factor', 'flip', and may also contain | |
'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. | |
For details on the values of these keys see | |
`mmdet/datasets/pipelines/formatting.py:Collect`. | |
cfg (dict): rpn test config. | |
Returns: | |
Tensor: shape (n, 4), proposals corresponding to original image scale. | |
""" | |
cfg = copy.deepcopy(cfg) | |
# deprecate arguments warning | |
if 'nms' not in cfg or 'max_num' in cfg or 'nms_thr' in cfg: | |
warnings.warn( | |
'In rpn_proposal or test_cfg, ' | |
'nms_thr has been moved to a dict named nms as ' | |
'iou_threshold, max_num has been renamed as max_per_img, ' | |
'name of original arguments and the way to specify ' | |
'iou_threshold of NMS will be deprecated.') | |
if 'nms' not in cfg: | |
cfg.nms = ConfigDict(dict(type='nms', iou_threshold=cfg.nms_thr)) | |
if 'max_num' in cfg: | |
if 'max_per_img' in cfg: | |
assert cfg.max_num == cfg.max_per_img, f'You set max_num and ' \ | |
f'max_per_img at the same time, but get {cfg.max_num} ' \ | |
f'and {cfg.max_per_img} respectively' \ | |
f'Please delete max_num which will be deprecated.' | |
else: | |
cfg.max_per_img = cfg.max_num | |
if 'nms_thr' in cfg: | |
assert cfg.nms.iou_threshold == cfg.nms_thr, f'You set ' \ | |
f'iou_threshold in nms and ' \ | |
f'nms_thr at the same time, but get ' \ | |
f'{cfg.nms.iou_threshold} and {cfg.nms_thr}' \ | |
f' respectively. Please delete the nms_thr ' \ | |
f'which will be deprecated.' | |
recovered_proposals = [] | |
for proposals, img_info in zip(aug_proposals, img_metas): | |
img_shape = img_info['img_shape'] | |
scale_factor = img_info['scale_factor'] | |
flip = img_info['flip'] | |
flip_direction = img_info['flip_direction'] | |
_proposals = proposals.clone() | |
_proposals[:, :4] = bbox_mapping_back(_proposals[:, :4], img_shape, | |
scale_factor, flip, | |
flip_direction) | |
recovered_proposals.append(_proposals) | |
aug_proposals = torch.cat(recovered_proposals, dim=0) | |
merged_proposals, _ = nms(aug_proposals[:, :4].contiguous(), | |
aug_proposals[:, -1].contiguous(), | |
cfg.nms.iou_threshold) | |
scores = merged_proposals[:, 4] | |
_, order = scores.sort(0, descending=True) | |
num = min(cfg.max_per_img, merged_proposals.shape[0]) | |
order = order[:num] | |
merged_proposals = merged_proposals[order, :] | |
return merged_proposals | |
# TODO remove this, never be used in mmdet | |
def merge_aug_bboxes(aug_bboxes, aug_scores, img_metas, rcnn_test_cfg): | |
"""Merge augmented detection bboxes and scores. | |
Args: | |
aug_bboxes (list[Tensor]): shape (n, 4*#class) | |
aug_scores (list[Tensor] or None): shape (n, #class) | |
img_shapes (list[Tensor]): shape (3, ). | |
rcnn_test_cfg (dict): rcnn test config. | |
Returns: | |
tuple: (bboxes, scores) | |
""" | |
recovered_bboxes = [] | |
for bboxes, img_info in zip(aug_bboxes, img_metas): | |
img_shape = img_info[0]['img_shape'] | |
scale_factor = img_info[0]['scale_factor'] | |
flip = img_info[0]['flip'] | |
flip_direction = img_info[0]['flip_direction'] | |
bboxes = bbox_mapping_back(bboxes, img_shape, scale_factor, flip, | |
flip_direction) | |
recovered_bboxes.append(bboxes) | |
bboxes = torch.stack(recovered_bboxes).mean(dim=0) | |
if aug_scores is None: | |
return bboxes | |
else: | |
scores = torch.stack(aug_scores).mean(dim=0) | |
return bboxes, scores | |
def merge_aug_results(aug_batch_results, aug_batch_img_metas): | |
"""Merge augmented detection results, only bboxes corresponding score under | |
flipping and multi-scale resizing can be processed now. | |
Args: | |
aug_batch_results (list[list[[obj:`InstanceData`]]): | |
Detection results of multiple images with | |
different augmentations. | |
The outer list indicate the augmentation . The inter | |
list indicate the batch dimension. | |
Each item usually contains the following keys. | |
- scores (Tensor): Classification scores, in shape | |
(num_instance,) | |
- labels (Tensor): Labels of bboxes, in shape | |
(num_instances,). | |
- bboxes (Tensor): In shape (num_instances, 4), | |
the last dimension 4 arrange as (x1, y1, x2, y2). | |
aug_batch_img_metas (list[list[dict]]): The outer list | |
indicates test-time augs (multiscale, flip, etc.) | |
and the inner list indicates | |
images in a batch. Each dict in the list contains | |
information of an image in the batch. | |
Returns: | |
batch_results (list[obj:`InstanceData`]): Same with | |
the input `aug_results` except that all bboxes have | |
been mapped to the original scale. | |
""" | |
num_augs = len(aug_batch_results) | |
num_imgs = len(aug_batch_results[0]) | |
batch_results = [] | |
aug_batch_results = copy.deepcopy(aug_batch_results) | |
for img_id in range(num_imgs): | |
aug_results = [] | |
for aug_id in range(num_augs): | |
img_metas = aug_batch_img_metas[aug_id][img_id] | |
results = aug_batch_results[aug_id][img_id] | |
img_shape = img_metas['img_shape'] | |
scale_factor = img_metas['scale_factor'] | |
flip = img_metas['flip'] | |
flip_direction = img_metas['flip_direction'] | |
bboxes = bbox_mapping_back(results.bboxes, img_shape, scale_factor, | |
flip, flip_direction) | |
results.bboxes = bboxes | |
aug_results.append(results) | |
merged_aug_results = results.cat(aug_results) | |
batch_results.append(merged_aug_results) | |
return batch_results | |
def merge_aug_scores(aug_scores): | |
"""Merge augmented bbox scores.""" | |
if isinstance(aug_scores[0], torch.Tensor): | |
return torch.mean(torch.stack(aug_scores), dim=0) | |
else: | |
return np.mean(aug_scores, axis=0) | |
def merge_aug_masks(aug_masks: List[Tensor], | |
img_metas: dict, | |
weights: Optional[Union[list, Tensor]] = None) -> Tensor: | |
"""Merge augmented mask prediction. | |
Args: | |
aug_masks (list[Tensor]): each has shape | |
(n, c, h, w). | |
img_metas (dict): Image information. | |
weights (list or Tensor): Weight of each aug_masks, | |
the length should be n. | |
Returns: | |
Tensor: has shape (n, c, h, w) | |
""" | |
recovered_masks = [] | |
for i, mask in enumerate(aug_masks): | |
if weights is not None: | |
assert len(weights) == len(aug_masks) | |
weight = weights[i] | |
else: | |
weight = 1 | |
flip = img_metas.get('filp', False) | |
if flip: | |
flip_direction = img_metas['flip_direction'] | |
if flip_direction == 'horizontal': | |
mask = mask[:, :, :, ::-1] | |
elif flip_direction == 'vertical': | |
mask = mask[:, :, ::-1, :] | |
elif flip_direction == 'diagonal': | |
mask = mask[:, :, :, ::-1] | |
mask = mask[:, :, ::-1, :] | |
else: | |
raise ValueError( | |
f"Invalid flipping direction '{flip_direction}'") | |
recovered_masks.append(mask[None, :] * weight) | |
merged_masks = torch.cat(recovered_masks, 0).mean(dim=0) | |
if weights is not None: | |
merged_masks = merged_masks * len(weights) / sum(weights) | |
return merged_masks | |