ai-photo-gallery / mmdet /models /roi_heads /standard_roi_head.py
KyanChen's picture
init
f549064
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Optional, Tuple
import torch
from torch import Tensor
from mmdet.registry import MODELS, TASK_UTILS
from mmdet.structures import DetDataSample, SampleList
from mmdet.structures.bbox import bbox2roi
from mmdet.utils import ConfigType, InstanceList
from ..task_modules.samplers import SamplingResult
from ..utils import empty_instances, unpack_gt_instances
from .base_roi_head import BaseRoIHead
@MODELS.register_module()
class StandardRoIHead(BaseRoIHead):
"""Simplest base roi head including one bbox head and one mask head."""
def init_assigner_sampler(self) -> None:
"""Initialize assigner and sampler."""
self.bbox_assigner = None
self.bbox_sampler = None
if self.train_cfg:
self.bbox_assigner = TASK_UTILS.build(self.train_cfg.assigner)
self.bbox_sampler = TASK_UTILS.build(
self.train_cfg.sampler, default_args=dict(context=self))
def init_bbox_head(self, bbox_roi_extractor: ConfigType,
bbox_head: ConfigType) -> None:
"""Initialize box head and box roi extractor.
Args:
bbox_roi_extractor (dict or ConfigDict): Config of box
roi extractor.
bbox_head (dict or ConfigDict): Config of box in box head.
"""
self.bbox_roi_extractor = MODELS.build(bbox_roi_extractor)
self.bbox_head = MODELS.build(bbox_head)
def init_mask_head(self, mask_roi_extractor: ConfigType,
mask_head: ConfigType) -> None:
"""Initialize mask head and mask roi extractor.
Args:
mask_roi_extractor (dict or ConfigDict): Config of mask roi
extractor.
mask_head (dict or ConfigDict): Config of mask in mask head.
"""
if mask_roi_extractor is not None:
self.mask_roi_extractor = MODELS.build(mask_roi_extractor)
self.share_roi_extractor = False
else:
self.share_roi_extractor = True
self.mask_roi_extractor = self.bbox_roi_extractor
self.mask_head = MODELS.build(mask_head)
# TODO: Need to refactor later
def forward(self,
x: Tuple[Tensor],
rpn_results_list: InstanceList,
batch_data_samples: SampleList = None) -> tuple:
"""Network forward process. Usually includes backbone, neck and head
forward without any post-processing.
Args:
x (List[Tensor]): Multi-level features that may have different
resolutions.
rpn_results_list (list[:obj:`InstanceData`]): List of region
proposals.
batch_data_samples (list[:obj:`DetDataSample`]): Each item contains
the meta information of each image and corresponding
annotations.
Returns
tuple: A tuple of features from ``bbox_head`` and ``mask_head``
forward.
"""
results = ()
proposals = [rpn_results.bboxes for rpn_results in rpn_results_list]
rois = bbox2roi(proposals)
# bbox head
if self.with_bbox:
bbox_results = self._bbox_forward(x, rois)
results = results + (bbox_results['cls_score'],
bbox_results['bbox_pred'])
# mask head
if self.with_mask:
mask_rois = rois[:100]
mask_results = self._mask_forward(x, mask_rois)
results = results + (mask_results['mask_preds'], )
return results
def loss(self, x: Tuple[Tensor], rpn_results_list: InstanceList,
batch_data_samples: List[DetDataSample]) -> dict:
"""Perform forward propagation and loss calculation of the detection
roi on the features of the upstream network.
Args:
x (tuple[Tensor]): List of multi-level img features.
rpn_results_list (list[:obj:`InstanceData`]): List of region
proposals.
batch_data_samples (list[:obj:`DetDataSample`]): The batch
data samples. It usually includes information such
as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`.
Returns:
dict[str, Tensor]: A dictionary of loss components
"""
assert len(rpn_results_list) == len(batch_data_samples)
outputs = unpack_gt_instances(batch_data_samples)
batch_gt_instances, batch_gt_instances_ignore, _ = outputs
# assign gts and sample proposals
num_imgs = len(batch_data_samples)
sampling_results = []
for i in range(num_imgs):
# rename rpn_results.bboxes to rpn_results.priors
rpn_results = rpn_results_list[i]
rpn_results.priors = rpn_results.pop('bboxes')
assign_result = self.bbox_assigner.assign(
rpn_results, batch_gt_instances[i],
batch_gt_instances_ignore[i])
sampling_result = self.bbox_sampler.sample(
assign_result,
rpn_results,
batch_gt_instances[i],
feats=[lvl_feat[i][None] for lvl_feat in x])
sampling_results.append(sampling_result)
losses = dict()
# bbox head loss
if self.with_bbox:
bbox_results = self.bbox_loss(x, sampling_results)
losses.update(bbox_results['loss_bbox'])
# mask head forward and loss
if self.with_mask:
mask_results = self.mask_loss(x, sampling_results,
bbox_results['bbox_feats'],
batch_gt_instances)
losses.update(mask_results['loss_mask'])
return losses
def _bbox_forward(self, x: Tuple[Tensor], rois: Tensor) -> dict:
"""Box head forward function used in both training and testing.
Args:
x (tuple[Tensor]): List of multi-level img features.
rois (Tensor): RoIs with the shape (n, 5) where the first
column indicates batch id of each RoI.
Returns:
dict[str, Tensor]: Usually returns a dictionary with keys:
- `cls_score` (Tensor): Classification scores.
- `bbox_pred` (Tensor): Box energies / deltas.
- `bbox_feats` (Tensor): Extract bbox RoI features.
"""
# TODO: a more flexible way to decide which feature maps to use
bbox_feats = self.bbox_roi_extractor(
x[:self.bbox_roi_extractor.num_inputs], rois)
if self.with_shared_head:
bbox_feats = self.shared_head(bbox_feats)
cls_score, bbox_pred = self.bbox_head(bbox_feats)
bbox_results = dict(
cls_score=cls_score, bbox_pred=bbox_pred, bbox_feats=bbox_feats)
return bbox_results
def bbox_loss(self, x: Tuple[Tensor],
sampling_results: List[SamplingResult]) -> dict:
"""Perform forward propagation and loss calculation of the bbox head on
the features of the upstream network.
Args:
x (tuple[Tensor]): List of multi-level img features.
sampling_results (list["obj:`SamplingResult`]): Sampling results.
Returns:
dict[str, Tensor]: Usually returns a dictionary with keys:
- `cls_score` (Tensor): Classification scores.
- `bbox_pred` (Tensor): Box energies / deltas.
- `bbox_feats` (Tensor): Extract bbox RoI features.
- `loss_bbox` (dict): A dictionary of bbox loss components.
"""
rois = bbox2roi([res.priors for res in sampling_results])
bbox_results = self._bbox_forward(x, rois)
bbox_loss_and_target = self.bbox_head.loss_and_target(
cls_score=bbox_results['cls_score'],
bbox_pred=bbox_results['bbox_pred'],
rois=rois,
sampling_results=sampling_results,
rcnn_train_cfg=self.train_cfg)
bbox_results.update(loss_bbox=bbox_loss_and_target['loss_bbox'])
return bbox_results
def mask_loss(self, x: Tuple[Tensor],
sampling_results: List[SamplingResult], bbox_feats: Tensor,
batch_gt_instances: InstanceList) -> dict:
"""Perform forward propagation and loss calculation of the mask head on
the features of the upstream network.
Args:
x (tuple[Tensor]): Tuple of multi-level img features.
sampling_results (list["obj:`SamplingResult`]): Sampling results.
bbox_feats (Tensor): Extract bbox RoI features.
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes``, ``labels``, and
``masks`` attributes.
Returns:
dict: Usually returns a dictionary with keys:
- `mask_preds` (Tensor): Mask prediction.
- `mask_feats` (Tensor): Extract mask RoI features.
- `mask_targets` (Tensor): Mask target of each positive\
proposals in the image.
- `loss_mask` (dict): A dictionary of mask loss components.
"""
if not self.share_roi_extractor:
pos_rois = bbox2roi([res.pos_priors for res in sampling_results])
mask_results = self._mask_forward(x, pos_rois)
else:
pos_inds = []
device = bbox_feats.device
for res in sampling_results:
pos_inds.append(
torch.ones(
res.pos_priors.shape[0],
device=device,
dtype=torch.uint8))
pos_inds.append(
torch.zeros(
res.neg_priors.shape[0],
device=device,
dtype=torch.uint8))
pos_inds = torch.cat(pos_inds)
mask_results = self._mask_forward(
x, pos_inds=pos_inds, bbox_feats=bbox_feats)
mask_loss_and_target = self.mask_head.loss_and_target(
mask_preds=mask_results['mask_preds'],
sampling_results=sampling_results,
batch_gt_instances=batch_gt_instances,
rcnn_train_cfg=self.train_cfg)
mask_results.update(loss_mask=mask_loss_and_target['loss_mask'])
return mask_results
def _mask_forward(self,
x: Tuple[Tensor],
rois: Tensor = None,
pos_inds: Optional[Tensor] = None,
bbox_feats: Optional[Tensor] = None) -> dict:
"""Mask head forward function used in both training and testing.
Args:
x (tuple[Tensor]): Tuple of multi-level img features.
rois (Tensor): RoIs with the shape (n, 5) where the first
column indicates batch id of each RoI.
pos_inds (Tensor, optional): Indices of positive samples.
Defaults to None.
bbox_feats (Tensor): Extract bbox RoI features. Defaults to None.
Returns:
dict[str, Tensor]: Usually returns a dictionary with keys:
- `mask_preds` (Tensor): Mask prediction.
- `mask_feats` (Tensor): Extract mask RoI features.
"""
assert ((rois is not None) ^
(pos_inds is not None and bbox_feats is not None))
if rois is not None:
mask_feats = self.mask_roi_extractor(
x[:self.mask_roi_extractor.num_inputs], rois)
if self.with_shared_head:
mask_feats = self.shared_head(mask_feats)
else:
assert bbox_feats is not None
mask_feats = bbox_feats[pos_inds]
mask_preds = self.mask_head(mask_feats)
mask_results = dict(mask_preds=mask_preds, mask_feats=mask_feats)
return mask_results
def predict_bbox(self,
x: Tuple[Tensor],
batch_img_metas: List[dict],
rpn_results_list: InstanceList,
rcnn_test_cfg: ConfigType,
rescale: bool = False) -> InstanceList:
"""Perform forward propagation of the bbox head and predict detection
results on the features of the upstream network.
Args:
x (tuple[Tensor]): Feature maps of all scale level.
batch_img_metas (list[dict]): List of image information.
rpn_results_list (list[:obj:`InstanceData`]): List of region
proposals.
rcnn_test_cfg (obj:`ConfigDict`): `test_cfg` of R-CNN.
rescale (bool): If True, return boxes in original image space.
Defaults to False.
Returns:
list[:obj:`InstanceData`]: Detection results of each image
after the post process.
Each item usually contains following keys.
- scores (Tensor): Classification scores, has a shape
(num_instance, )
- labels (Tensor): Labels of bboxes, has a shape
(num_instances, ).
- bboxes (Tensor): Has a shape (num_instances, 4),
the last dimension 4 arrange as (x1, y1, x2, y2).
"""
proposals = [res.bboxes for res in rpn_results_list]
rois = bbox2roi(proposals)
if rois.shape[0] == 0:
return empty_instances(
batch_img_metas,
rois.device,
task_type='bbox',
box_type=self.bbox_head.predict_box_type,
num_classes=self.bbox_head.num_classes,
score_per_cls=rcnn_test_cfg is None)
bbox_results = self._bbox_forward(x, rois)
# split batch bbox prediction back to each image
cls_scores = bbox_results['cls_score']
bbox_preds = bbox_results['bbox_pred']
num_proposals_per_img = tuple(len(p) for p in proposals)
rois = rois.split(num_proposals_per_img, 0)
cls_scores = cls_scores.split(num_proposals_per_img, 0)
# some detector with_reg is False, bbox_preds will be None
if bbox_preds is not None:
# TODO move this to a sabl_roi_head
# the bbox prediction of some detectors like SABL is not Tensor
if isinstance(bbox_preds, torch.Tensor):
bbox_preds = bbox_preds.split(num_proposals_per_img, 0)
else:
bbox_preds = self.bbox_head.bbox_pred_split(
bbox_preds, num_proposals_per_img)
else:
bbox_preds = (None, ) * len(proposals)
result_list = self.bbox_head.predict_by_feat(
rois=rois,
cls_scores=cls_scores,
bbox_preds=bbox_preds,
batch_img_metas=batch_img_metas,
rcnn_test_cfg=rcnn_test_cfg,
rescale=rescale)
return result_list
def predict_mask(self,
x: Tuple[Tensor],
batch_img_metas: List[dict],
results_list: InstanceList,
rescale: bool = False) -> InstanceList:
"""Perform forward propagation of the mask head and predict detection
results on the features of the upstream network.
Args:
x (tuple[Tensor]): Feature maps of all scale level.
batch_img_metas (list[dict]): List of image information.
results_list (list[:obj:`InstanceData`]): Detection results of
each image.
rescale (bool): If True, return boxes in original image space.
Defaults to False.
Returns:
list[:obj:`InstanceData`]: Detection results of each image
after the post process.
Each item usually contains following keys.
- scores (Tensor): Classification scores, has a shape
(num_instance, )
- labels (Tensor): Labels of bboxes, has a shape
(num_instances, ).
- bboxes (Tensor): Has a shape (num_instances, 4),
the last dimension 4 arrange as (x1, y1, x2, y2).
- masks (Tensor): Has a shape (num_instances, H, W).
"""
# don't need to consider aug_test.
bboxes = [res.bboxes for res in results_list]
mask_rois = bbox2roi(bboxes)
if mask_rois.shape[0] == 0:
results_list = empty_instances(
batch_img_metas,
mask_rois.device,
task_type='mask',
instance_results=results_list,
mask_thr_binary=self.test_cfg.mask_thr_binary)
return results_list
mask_results = self._mask_forward(x, mask_rois)
mask_preds = mask_results['mask_preds']
# split batch mask prediction back to each image
num_mask_rois_per_img = [len(res) for res in results_list]
mask_preds = mask_preds.split(num_mask_rois_per_img, 0)
# TODO: Handle the case where rescale is false
results_list = self.mask_head.predict_by_feat(
mask_preds=mask_preds,
results_list=results_list,
batch_img_metas=batch_img_metas,
rcnn_test_cfg=self.test_cfg,
rescale=rescale)
return results_list