KyanChen's picture
init
f549064
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, List, Tuple
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule
from mmengine.config import ConfigDict
from mmengine.model import BaseModule
from mmengine.structures import InstanceData
from torch import Tensor
from mmdet.models.task_modules.samplers import SamplingResult
from mmdet.registry import MODELS
from mmdet.utils import ConfigType, InstanceList, MultiConfig, OptConfigType
@MODELS.register_module()
class GridHead(BaseModule):
"""Implementation of `Grid Head <https://arxiv.org/abs/1811.12030>`_
Args:
grid_points (int): The number of grid points. Defaults to 9.
num_convs (int): The number of convolution layers. Defaults to 8.
roi_feat_size (int): RoI feature size. Default to 14.
in_channels (int): The channel number of inputs features.
Defaults to 256.
conv_kernel_size (int): The kernel size of convolution layers.
Defaults to 3.
point_feat_channels (int): The number of channels of each point
features. Defaults to 64.
class_agnostic (bool): Whether use class agnostic classification.
If so, the output channels of logits will be 1. Defaults to False.
loss_grid (:obj:`ConfigDict` or dict): Config of grid loss.
conv_cfg (:obj:`ConfigDict` or dict, optional) dictionary to
construct and config conv layer.
norm_cfg (:obj:`ConfigDict` or dict): dictionary to construct and
config norm layer.
init_cfg (:obj:`ConfigDict` or dict or list[:obj:`ConfigDict` or \
dict]): Initialization config dict.
"""
def __init__(
self,
grid_points: int = 9,
num_convs: int = 8,
roi_feat_size: int = 14,
in_channels: int = 256,
conv_kernel_size: int = 3,
point_feat_channels: int = 64,
deconv_kernel_size: int = 4,
class_agnostic: bool = False,
loss_grid: ConfigType = dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=15),
conv_cfg: OptConfigType = None,
norm_cfg: ConfigType = dict(type='GN', num_groups=36),
init_cfg: MultiConfig = [
dict(type='Kaiming', layer=['Conv2d', 'Linear']),
dict(
type='Normal',
layer='ConvTranspose2d',
std=0.001,
override=dict(
type='Normal',
name='deconv2',
std=0.001,
bias=-np.log(0.99 / 0.01)))
]
) -> None:
super().__init__(init_cfg=init_cfg)
self.grid_points = grid_points
self.num_convs = num_convs
self.roi_feat_size = roi_feat_size
self.in_channels = in_channels
self.conv_kernel_size = conv_kernel_size
self.point_feat_channels = point_feat_channels
self.conv_out_channels = self.point_feat_channels * self.grid_points
self.class_agnostic = class_agnostic
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
if isinstance(norm_cfg, dict) and norm_cfg['type'] == 'GN':
assert self.conv_out_channels % norm_cfg['num_groups'] == 0
assert self.grid_points >= 4
self.grid_size = int(np.sqrt(self.grid_points))
if self.grid_size * self.grid_size != self.grid_points:
raise ValueError('grid_points must be a square number')
# the predicted heatmap is half of whole_map_size
if not isinstance(self.roi_feat_size, int):
raise ValueError('Only square RoIs are supporeted in Grid R-CNN')
self.whole_map_size = self.roi_feat_size * 4
# compute point-wise sub-regions
self.sub_regions = self.calc_sub_regions()
self.convs = []
for i in range(self.num_convs):
in_channels = (
self.in_channels if i == 0 else self.conv_out_channels)
stride = 2 if i == 0 else 1
padding = (self.conv_kernel_size - 1) // 2
self.convs.append(
ConvModule(
in_channels,
self.conv_out_channels,
self.conv_kernel_size,
stride=stride,
padding=padding,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
bias=True))
self.convs = nn.Sequential(*self.convs)
self.deconv1 = nn.ConvTranspose2d(
self.conv_out_channels,
self.conv_out_channels,
kernel_size=deconv_kernel_size,
stride=2,
padding=(deconv_kernel_size - 2) // 2,
groups=grid_points)
self.norm1 = nn.GroupNorm(grid_points, self.conv_out_channels)
self.deconv2 = nn.ConvTranspose2d(
self.conv_out_channels,
grid_points,
kernel_size=deconv_kernel_size,
stride=2,
padding=(deconv_kernel_size - 2) // 2,
groups=grid_points)
# find the 4-neighbor of each grid point
self.neighbor_points = []
grid_size = self.grid_size
for i in range(grid_size): # i-th column
for j in range(grid_size): # j-th row
neighbors = []
if i > 0: # left: (i - 1, j)
neighbors.append((i - 1) * grid_size + j)
if j > 0: # up: (i, j - 1)
neighbors.append(i * grid_size + j - 1)
if j < grid_size - 1: # down: (i, j + 1)
neighbors.append(i * grid_size + j + 1)
if i < grid_size - 1: # right: (i + 1, j)
neighbors.append((i + 1) * grid_size + j)
self.neighbor_points.append(tuple(neighbors))
# total edges in the grid
self.num_edges = sum([len(p) for p in self.neighbor_points])
self.forder_trans = nn.ModuleList() # first-order feature transition
self.sorder_trans = nn.ModuleList() # second-order feature transition
for neighbors in self.neighbor_points:
fo_trans = nn.ModuleList()
so_trans = nn.ModuleList()
for _ in range(len(neighbors)):
# each transition module consists of a 5x5 depth-wise conv and
# 1x1 conv.
fo_trans.append(
nn.Sequential(
nn.Conv2d(
self.point_feat_channels,
self.point_feat_channels,
5,
stride=1,
padding=2,
groups=self.point_feat_channels),
nn.Conv2d(self.point_feat_channels,
self.point_feat_channels, 1)))
so_trans.append(
nn.Sequential(
nn.Conv2d(
self.point_feat_channels,
self.point_feat_channels,
5,
1,
2,
groups=self.point_feat_channels),
nn.Conv2d(self.point_feat_channels,
self.point_feat_channels, 1)))
self.forder_trans.append(fo_trans)
self.sorder_trans.append(so_trans)
self.loss_grid = MODELS.build(loss_grid)
def forward(self, x: Tensor) -> Dict[str, Tensor]:
"""forward function of ``GridHead``.
Args:
x (Tensor): RoI features, has shape
(num_rois, num_channels, roi_feat_size, roi_feat_size).
Returns:
Dict[str, Tensor]: Return a dict including fused and unfused
heatmap.
"""
assert x.shape[-1] == x.shape[-2] == self.roi_feat_size
# RoI feature transformation, downsample 2x
x = self.convs(x)
c = self.point_feat_channels
# first-order fusion
x_fo = [None for _ in range(self.grid_points)]
for i, points in enumerate(self.neighbor_points):
x_fo[i] = x[:, i * c:(i + 1) * c]
for j, point_idx in enumerate(points):
x_fo[i] = x_fo[i] + self.forder_trans[i][j](
x[:, point_idx * c:(point_idx + 1) * c])
# second-order fusion
x_so = [None for _ in range(self.grid_points)]
for i, points in enumerate(self.neighbor_points):
x_so[i] = x[:, i * c:(i + 1) * c]
for j, point_idx in enumerate(points):
x_so[i] = x_so[i] + self.sorder_trans[i][j](x_fo[point_idx])
# predicted heatmap with fused features
x2 = torch.cat(x_so, dim=1)
x2 = self.deconv1(x2)
x2 = F.relu(self.norm1(x2), inplace=True)
heatmap = self.deconv2(x2)
# predicted heatmap with original features (applicable during training)
if self.training:
x1 = x
x1 = self.deconv1(x1)
x1 = F.relu(self.norm1(x1), inplace=True)
heatmap_unfused = self.deconv2(x1)
else:
heatmap_unfused = heatmap
return dict(fused=heatmap, unfused=heatmap_unfused)
def calc_sub_regions(self) -> List[Tuple[float]]:
"""Compute point specific representation regions.
See `Grid R-CNN Plus <https://arxiv.org/abs/1906.05688>`_ for details.
"""
# to make it consistent with the original implementation, half_size
# is computed as 2 * quarter_size, which is smaller
half_size = self.whole_map_size // 4 * 2
sub_regions = []
for i in range(self.grid_points):
x_idx = i // self.grid_size
y_idx = i % self.grid_size
if x_idx == 0:
sub_x1 = 0
elif x_idx == self.grid_size - 1:
sub_x1 = half_size
else:
ratio = x_idx / (self.grid_size - 1) - 0.25
sub_x1 = max(int(ratio * self.whole_map_size), 0)
if y_idx == 0:
sub_y1 = 0
elif y_idx == self.grid_size - 1:
sub_y1 = half_size
else:
ratio = y_idx / (self.grid_size - 1) - 0.25
sub_y1 = max(int(ratio * self.whole_map_size), 0)
sub_regions.append(
(sub_x1, sub_y1, sub_x1 + half_size, sub_y1 + half_size))
return sub_regions
def get_targets(self, sampling_results: List[SamplingResult],
rcnn_train_cfg: ConfigDict) -> Tensor:
"""Calculate the ground truth for all samples in a batch according to
the sampling_results.".
Args:
sampling_results (List[:obj:`SamplingResult`]): Assign results of
all images in a batch after sampling.
rcnn_train_cfg (:obj:`ConfigDict`): `train_cfg` of RCNN.
Returns:
Tensor: Grid heatmap targets.
"""
# mix all samples (across images) together.
pos_bboxes = torch.cat([res.pos_bboxes for res in sampling_results],
dim=0).cpu()
pos_gt_bboxes = torch.cat(
[res.pos_gt_bboxes for res in sampling_results], dim=0).cpu()
assert pos_bboxes.shape == pos_gt_bboxes.shape
# expand pos_bboxes to 2x of original size
x1 = pos_bboxes[:, 0] - (pos_bboxes[:, 2] - pos_bboxes[:, 0]) / 2
y1 = pos_bboxes[:, 1] - (pos_bboxes[:, 3] - pos_bboxes[:, 1]) / 2
x2 = pos_bboxes[:, 2] + (pos_bboxes[:, 2] - pos_bboxes[:, 0]) / 2
y2 = pos_bboxes[:, 3] + (pos_bboxes[:, 3] - pos_bboxes[:, 1]) / 2
pos_bboxes = torch.stack([x1, y1, x2, y2], dim=-1)
pos_bbox_ws = (pos_bboxes[:, 2] - pos_bboxes[:, 0]).unsqueeze(-1)
pos_bbox_hs = (pos_bboxes[:, 3] - pos_bboxes[:, 1]).unsqueeze(-1)
num_rois = pos_bboxes.shape[0]
map_size = self.whole_map_size
# this is not the final target shape
targets = torch.zeros((num_rois, self.grid_points, map_size, map_size),
dtype=torch.float)
# pre-compute interpolation factors for all grid points.
# the first item is the factor of x-dim, and the second is y-dim.
# for a 9-point grid, factors are like (1, 0), (0.5, 0.5), (0, 1)
factors = []
for j in range(self.grid_points):
x_idx = j // self.grid_size
y_idx = j % self.grid_size
factors.append((1 - x_idx / (self.grid_size - 1),
1 - y_idx / (self.grid_size - 1)))
radius = rcnn_train_cfg.pos_radius
radius2 = radius**2
for i in range(num_rois):
# ignore small bboxes
if (pos_bbox_ws[i] <= self.grid_size
or pos_bbox_hs[i] <= self.grid_size):
continue
# for each grid point, mark a small circle as positive
for j in range(self.grid_points):
factor_x, factor_y = factors[j]
gridpoint_x = factor_x * pos_gt_bboxes[i, 0] + (
1 - factor_x) * pos_gt_bboxes[i, 2]
gridpoint_y = factor_y * pos_gt_bboxes[i, 1] + (
1 - factor_y) * pos_gt_bboxes[i, 3]
cx = int((gridpoint_x - pos_bboxes[i, 0]) / pos_bbox_ws[i] *
map_size)
cy = int((gridpoint_y - pos_bboxes[i, 1]) / pos_bbox_hs[i] *
map_size)
for x in range(cx - radius, cx + radius + 1):
for y in range(cy - radius, cy + radius + 1):
if x >= 0 and x < map_size and y >= 0 and y < map_size:
if (x - cx)**2 + (y - cy)**2 <= radius2:
targets[i, j, y, x] = 1
# reduce the target heatmap size by a half
# proposed in Grid R-CNN Plus (https://arxiv.org/abs/1906.05688).
sub_targets = []
for i in range(self.grid_points):
sub_x1, sub_y1, sub_x2, sub_y2 = self.sub_regions[i]
sub_targets.append(targets[:, [i], sub_y1:sub_y2, sub_x1:sub_x2])
sub_targets = torch.cat(sub_targets, dim=1)
sub_targets = sub_targets.to(sampling_results[0].pos_bboxes.device)
return sub_targets
def loss(self, grid_pred: Tensor, sample_idx: Tensor,
sampling_results: List[SamplingResult],
rcnn_train_cfg: ConfigDict) -> dict:
"""Calculate the loss based on the features extracted by the grid head.
Args:
grid_pred (dict[str, Tensor]): Outputs of grid_head forward.
sample_idx (Tensor): The sampling index of ``grid_pred``.
sampling_results (List[obj:SamplingResult]): Assign results of
all images in a batch after sampling.
rcnn_train_cfg (obj:`ConfigDict`): `train_cfg` of RCNN.
Returns:
dict: A dictionary of loss and targets components.
"""
grid_targets = self.get_targets(sampling_results, rcnn_train_cfg)
grid_targets = grid_targets[sample_idx]
loss_fused = self.loss_grid(grid_pred['fused'], grid_targets)
loss_unfused = self.loss_grid(grid_pred['unfused'], grid_targets)
loss_grid = loss_fused + loss_unfused
return dict(loss_grid=loss_grid)
def predict_by_feat(self,
grid_preds: Dict[str, Tensor],
results_list: List[InstanceData],
batch_img_metas: List[dict],
rescale: bool = False) -> InstanceList:
"""Adjust the predicted bboxes from bbox head.
Args:
grid_preds (dict[str, Tensor]): dictionary outputted by forward
function.
results_list (list[:obj:`InstanceData`]): Detection results of
each image.
batch_img_metas (list[dict]): List of image information.
rescale (bool): If True, return boxes in original image space.
Defaults to False.
Returns:
list[:obj:`InstanceData`]: Detection results of each image
after the post process. Each item usually contains following keys.
- scores (Tensor): Classification scores, has a shape \
(num_instance, )
- labels (Tensor): Labels of bboxes, has a shape (num_instances, ).
- bboxes (Tensor): Has a shape (num_instances, 4), the last \
dimension 4 arrange as (x1, y1, x2, y2).
"""
num_roi_per_img = tuple(res.bboxes.size(0) for res in results_list)
grid_preds = {
k: v.split(num_roi_per_img, 0)
for k, v in grid_preds.items()
}
for i, results in enumerate(results_list):
if len(results) != 0:
bboxes = self._predict_by_feat_single(
grid_pred=grid_preds['fused'][i],
bboxes=results.bboxes,
img_meta=batch_img_metas[i],
rescale=rescale)
results.bboxes = bboxes
return results_list
def _predict_by_feat_single(self,
grid_pred: Tensor,
bboxes: Tensor,
img_meta: dict,
rescale: bool = False) -> Tensor:
"""Adjust ``bboxes`` according to ``grid_pred``.
Args:
grid_pred (Tensor): Grid fused heatmap.
bboxes (Tensor): Predicted bboxes, has shape (n, 4)
img_meta (dict): image information.
rescale (bool): If True, return boxes in original image space.
Defaults to False.
Returns:
Tensor: adjusted bboxes.
"""
assert bboxes.size(0) == grid_pred.size(0)
grid_pred = grid_pred.sigmoid()
R, c, h, w = grid_pred.shape
half_size = self.whole_map_size // 4 * 2
assert h == w == half_size
assert c == self.grid_points
# find the point with max scores in the half-sized heatmap
grid_pred = grid_pred.view(R * c, h * w)
pred_scores, pred_position = grid_pred.max(dim=1)
xs = pred_position % w
ys = pred_position // w
# get the position in the whole heatmap instead of half-sized heatmap
for i in range(self.grid_points):
xs[i::self.grid_points] += self.sub_regions[i][0]
ys[i::self.grid_points] += self.sub_regions[i][1]
# reshape to (num_rois, grid_points)
pred_scores, xs, ys = tuple(
map(lambda x: x.view(R, c), [pred_scores, xs, ys]))
# get expanded pos_bboxes
widths = (bboxes[:, 2] - bboxes[:, 0]).unsqueeze(-1)
heights = (bboxes[:, 3] - bboxes[:, 1]).unsqueeze(-1)
x1 = (bboxes[:, 0, None] - widths / 2)
y1 = (bboxes[:, 1, None] - heights / 2)
# map the grid point to the absolute coordinates
abs_xs = (xs.float() + 0.5) / w * widths + x1
abs_ys = (ys.float() + 0.5) / h * heights + y1
# get the grid points indices that fall on the bbox boundaries
x1_inds = [i for i in range(self.grid_size)]
y1_inds = [i * self.grid_size for i in range(self.grid_size)]
x2_inds = [
self.grid_points - self.grid_size + i
for i in range(self.grid_size)
]
y2_inds = [(i + 1) * self.grid_size - 1 for i in range(self.grid_size)]
# voting of all grid points on some boundary
bboxes_x1 = (abs_xs[:, x1_inds] * pred_scores[:, x1_inds]).sum(
dim=1, keepdim=True) / (
pred_scores[:, x1_inds].sum(dim=1, keepdim=True))
bboxes_y1 = (abs_ys[:, y1_inds] * pred_scores[:, y1_inds]).sum(
dim=1, keepdim=True) / (
pred_scores[:, y1_inds].sum(dim=1, keepdim=True))
bboxes_x2 = (abs_xs[:, x2_inds] * pred_scores[:, x2_inds]).sum(
dim=1, keepdim=True) / (
pred_scores[:, x2_inds].sum(dim=1, keepdim=True))
bboxes_y2 = (abs_ys[:, y2_inds] * pred_scores[:, y2_inds]).sum(
dim=1, keepdim=True) / (
pred_scores[:, y2_inds].sum(dim=1, keepdim=True))
bboxes = torch.cat([bboxes_x1, bboxes_y1, bboxes_x2, bboxes_y2], dim=1)
bboxes[:, [0, 2]].clamp_(min=0, max=img_meta['img_shape'][1])
bboxes[:, [1, 3]].clamp_(min=0, max=img_meta['img_shape'][0])
if rescale:
assert img_meta.get('scale_factor') is not None
bboxes /= bboxes.new_tensor(img_meta['scale_factor']).repeat(
(1, 2))
return bboxes