Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import Dict, List, Optional, Tuple | |
import torch | |
import torch.nn.functional as F | |
from torch import Tensor | |
from mmdet.models.test_time_augs import merge_aug_masks | |
from mmdet.registry import MODELS | |
from mmdet.structures import SampleList | |
from mmdet.structures.bbox import bbox2roi | |
from mmdet.utils import InstanceList, OptConfigType | |
from ..layers import adaptive_avg_pool2d | |
from ..task_modules.samplers import SamplingResult | |
from ..utils import empty_instances, unpack_gt_instances | |
from .cascade_roi_head import CascadeRoIHead | |
class HybridTaskCascadeRoIHead(CascadeRoIHead): | |
"""Hybrid task cascade roi head including one bbox head and one mask head. | |
https://arxiv.org/abs/1901.07518 | |
Args: | |
num_stages (int): Number of cascade stages. | |
stage_loss_weights (list[float]): Loss weight for every stage. | |
semantic_roi_extractor (:obj:`ConfigDict` or dict, optional): | |
Config of semantic roi extractor. Defaults to None. | |
Semantic_head (:obj:`ConfigDict` or dict, optional): | |
Config of semantic head. Defaults to None. | |
interleaved (bool): Whether to interleaves the box branch and mask | |
branch. If True, the mask branch can take the refined bounding | |
box predictions. Defaults to True. | |
mask_info_flow (bool): Whether to turn on the mask information flow, | |
which means that feeding the mask features of the preceding stage | |
to the current stage. Defaults to True. | |
""" | |
def __init__(self, | |
num_stages: int, | |
stage_loss_weights: List[float], | |
semantic_roi_extractor: OptConfigType = None, | |
semantic_head: OptConfigType = None, | |
semantic_fusion: Tuple[str] = ('bbox', 'mask'), | |
interleaved: bool = True, | |
mask_info_flow: bool = True, | |
**kwargs) -> None: | |
super().__init__( | |
num_stages=num_stages, | |
stage_loss_weights=stage_loss_weights, | |
**kwargs) | |
assert self.with_bbox | |
assert not self.with_shared_head # shared head is not supported | |
if semantic_head is not None: | |
self.semantic_roi_extractor = MODELS.build(semantic_roi_extractor) | |
self.semantic_head = MODELS.build(semantic_head) | |
self.semantic_fusion = semantic_fusion | |
self.interleaved = interleaved | |
self.mask_info_flow = mask_info_flow | |
# TODO move to base_roi_head later | |
def with_semantic(self) -> bool: | |
"""bool: whether the head has semantic head""" | |
return hasattr(self, | |
'semantic_head') and self.semantic_head is not None | |
def _bbox_forward( | |
self, | |
stage: int, | |
x: Tuple[Tensor], | |
rois: Tensor, | |
semantic_feat: Optional[Tensor] = None) -> Dict[str, Tensor]: | |
"""Box head forward function used in both training and testing. | |
Args: | |
stage (int): The current stage in Cascade RoI Head. | |
x (tuple[Tensor]): List of multi-level img features. | |
rois (Tensor): RoIs with the shape (n, 5) where the first | |
column indicates batch id of each RoI. | |
semantic_feat (Tensor, optional): Semantic feature. Defaults to | |
None. | |
Returns: | |
dict[str, Tensor]: Usually returns a dictionary with keys: | |
- `cls_score` (Tensor): Classification scores. | |
- `bbox_pred` (Tensor): Box energies / deltas. | |
- `bbox_feats` (Tensor): Extract bbox RoI features. | |
""" | |
bbox_roi_extractor = self.bbox_roi_extractor[stage] | |
bbox_head = self.bbox_head[stage] | |
bbox_feats = bbox_roi_extractor(x[:bbox_roi_extractor.num_inputs], | |
rois) | |
if self.with_semantic and 'bbox' in self.semantic_fusion: | |
bbox_semantic_feat = self.semantic_roi_extractor([semantic_feat], | |
rois) | |
if bbox_semantic_feat.shape[-2:] != bbox_feats.shape[-2:]: | |
bbox_semantic_feat = adaptive_avg_pool2d( | |
bbox_semantic_feat, bbox_feats.shape[-2:]) | |
bbox_feats += bbox_semantic_feat | |
cls_score, bbox_pred = bbox_head(bbox_feats) | |
bbox_results = dict(cls_score=cls_score, bbox_pred=bbox_pred) | |
return bbox_results | |
def bbox_loss(self, | |
stage: int, | |
x: Tuple[Tensor], | |
sampling_results: List[SamplingResult], | |
semantic_feat: Optional[Tensor] = None) -> dict: | |
"""Run forward function and calculate loss for box head in training. | |
Args: | |
stage (int): The current stage in Cascade RoI Head. | |
x (tuple[Tensor]): List of multi-level img features. | |
sampling_results (list["obj:`SamplingResult`]): Sampling results. | |
semantic_feat (Tensor, optional): Semantic feature. Defaults to | |
None. | |
Returns: | |
dict: Usually returns a dictionary with keys: | |
- `cls_score` (Tensor): Classification scores. | |
- `bbox_pred` (Tensor): Box energies / deltas. | |
- `bbox_feats` (Tensor): Extract bbox RoI features. | |
- `loss_bbox` (dict): A dictionary of bbox loss components. | |
- `rois` (Tensor): RoIs with the shape (n, 5) where the first | |
column indicates batch id of each RoI. | |
- `bbox_targets` (tuple): Ground truth for proposals in a | |
single image. Containing the following list of Tensors: | |
(labels, label_weights, bbox_targets, bbox_weights) | |
""" | |
bbox_head = self.bbox_head[stage] | |
rois = bbox2roi([res.priors for res in sampling_results]) | |
bbox_results = self._bbox_forward( | |
stage, x, rois, semantic_feat=semantic_feat) | |
bbox_results.update(rois=rois) | |
bbox_loss_and_target = bbox_head.loss_and_target( | |
cls_score=bbox_results['cls_score'], | |
bbox_pred=bbox_results['bbox_pred'], | |
rois=rois, | |
sampling_results=sampling_results, | |
rcnn_train_cfg=self.train_cfg[stage]) | |
bbox_results.update(bbox_loss_and_target) | |
return bbox_results | |
def _mask_forward(self, | |
stage: int, | |
x: Tuple[Tensor], | |
rois: Tensor, | |
semantic_feat: Optional[Tensor] = None, | |
training: bool = True) -> Dict[str, Tensor]: | |
"""Mask head forward function used only in training. | |
Args: | |
stage (int): The current stage in Cascade RoI Head. | |
x (tuple[Tensor]): Tuple of multi-level img features. | |
rois (Tensor): RoIs with the shape (n, 5) where the first | |
column indicates batch id of each RoI. | |
semantic_feat (Tensor, optional): Semantic feature. Defaults to | |
None. | |
training (bool): Mask Forward is different between training and | |
testing. If True, use the mask forward in training. | |
Defaults to True. | |
Returns: | |
dict: Usually returns a dictionary with keys: | |
- `mask_preds` (Tensor): Mask prediction. | |
""" | |
mask_roi_extractor = self.mask_roi_extractor[stage] | |
mask_head = self.mask_head[stage] | |
mask_feats = mask_roi_extractor(x[:mask_roi_extractor.num_inputs], | |
rois) | |
# semantic feature fusion | |
# element-wise sum for original features and pooled semantic features | |
if self.with_semantic and 'mask' in self.semantic_fusion: | |
mask_semantic_feat = self.semantic_roi_extractor([semantic_feat], | |
rois) | |
if mask_semantic_feat.shape[-2:] != mask_feats.shape[-2:]: | |
mask_semantic_feat = F.adaptive_avg_pool2d( | |
mask_semantic_feat, mask_feats.shape[-2:]) | |
mask_feats = mask_feats + mask_semantic_feat | |
# mask information flow | |
# forward all previous mask heads to obtain last_feat, and fuse it | |
# with the normal mask feature | |
if training: | |
if self.mask_info_flow: | |
last_feat = None | |
for i in range(stage): | |
last_feat = self.mask_head[i]( | |
mask_feats, last_feat, return_logits=False) | |
mask_preds = mask_head( | |
mask_feats, last_feat, return_feat=False) | |
else: | |
mask_preds = mask_head(mask_feats, return_feat=False) | |
mask_results = dict(mask_preds=mask_preds) | |
else: | |
aug_masks = [] | |
last_feat = None | |
for i in range(self.num_stages): | |
mask_head = self.mask_head[i] | |
if self.mask_info_flow: | |
mask_preds, last_feat = mask_head(mask_feats, last_feat) | |
else: | |
mask_preds = mask_head(mask_feats) | |
aug_masks.append(mask_preds) | |
mask_results = dict(mask_preds=aug_masks) | |
return mask_results | |
def mask_loss(self, | |
stage: int, | |
x: Tuple[Tensor], | |
sampling_results: List[SamplingResult], | |
batch_gt_instances: InstanceList, | |
semantic_feat: Optional[Tensor] = None) -> dict: | |
"""Run forward function and calculate loss for mask head in training. | |
Args: | |
stage (int): The current stage in Cascade RoI Head. | |
x (tuple[Tensor]): Tuple of multi-level img features. | |
sampling_results (list["obj:`SamplingResult`]): Sampling results. | |
batch_gt_instances (list[:obj:`InstanceData`]): Batch of | |
gt_instance. It usually includes ``bboxes``, ``labels``, and | |
``masks`` attributes. | |
semantic_feat (Tensor, optional): Semantic feature. Defaults to | |
None. | |
Returns: | |
dict: Usually returns a dictionary with keys: | |
- `mask_preds` (Tensor): Mask prediction. | |
- `loss_mask` (dict): A dictionary of mask loss components. | |
""" | |
pos_rois = bbox2roi([res.pos_priors for res in sampling_results]) | |
mask_results = self._mask_forward( | |
stage=stage, | |
x=x, | |
rois=pos_rois, | |
semantic_feat=semantic_feat, | |
training=True) | |
mask_head = self.mask_head[stage] | |
mask_loss_and_target = mask_head.loss_and_target( | |
mask_preds=mask_results['mask_preds'], | |
sampling_results=sampling_results, | |
batch_gt_instances=batch_gt_instances, | |
rcnn_train_cfg=self.train_cfg[stage]) | |
mask_results.update(mask_loss_and_target) | |
return mask_results | |
def loss(self, x: Tuple[Tensor], rpn_results_list: InstanceList, | |
batch_data_samples: SampleList) -> dict: | |
"""Perform forward propagation and loss calculation of the detection | |
roi on the features of the upstream network. | |
Args: | |
x (tuple[Tensor]): List of multi-level img features. | |
rpn_results_list (list[:obj:`InstanceData`]): List of region | |
proposals. | |
batch_data_samples (list[:obj:`DetDataSample`]): The batch | |
data samples. It usually includes information such | |
as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`. | |
Returns: | |
dict[str, Tensor]: A dictionary of loss components | |
""" | |
assert len(rpn_results_list) == len(batch_data_samples) | |
outputs = unpack_gt_instances(batch_data_samples) | |
batch_gt_instances, batch_gt_instances_ignore, batch_img_metas \ | |
= outputs | |
# semantic segmentation part | |
# 2 outputs: segmentation prediction and embedded features | |
losses = dict() | |
if self.with_semantic: | |
gt_semantic_segs = [ | |
data_sample.gt_sem_seg.sem_seg | |
for data_sample in batch_data_samples | |
] | |
gt_semantic_segs = torch.stack(gt_semantic_segs) | |
semantic_pred, semantic_feat = self.semantic_head(x) | |
loss_seg = self.semantic_head.loss(semantic_pred, gt_semantic_segs) | |
losses['loss_semantic_seg'] = loss_seg | |
else: | |
semantic_feat = None | |
results_list = rpn_results_list | |
num_imgs = len(batch_img_metas) | |
for stage in range(self.num_stages): | |
self.current_stage = stage | |
stage_loss_weight = self.stage_loss_weights[stage] | |
# assign gts and sample proposals | |
sampling_results = [] | |
bbox_assigner = self.bbox_assigner[stage] | |
bbox_sampler = self.bbox_sampler[stage] | |
for i in range(num_imgs): | |
results = results_list[i] | |
# rename rpn_results.bboxes to rpn_results.priors | |
if 'bboxes' in results: | |
results.priors = results.pop('bboxes') | |
assign_result = bbox_assigner.assign( | |
results, batch_gt_instances[i], | |
batch_gt_instances_ignore[i]) | |
sampling_result = bbox_sampler.sample( | |
assign_result, | |
results, | |
batch_gt_instances[i], | |
feats=[lvl_feat[i][None] for lvl_feat in x]) | |
sampling_results.append(sampling_result) | |
# bbox head forward and loss | |
bbox_results = self.bbox_loss( | |
stage=stage, | |
x=x, | |
sampling_results=sampling_results, | |
semantic_feat=semantic_feat) | |
for name, value in bbox_results['loss_bbox'].items(): | |
losses[f's{stage}.{name}'] = ( | |
value * stage_loss_weight if 'loss' in name else value) | |
# mask head forward and loss | |
if self.with_mask: | |
# interleaved execution: use regressed bboxes by the box branch | |
# to train the mask branch | |
if self.interleaved: | |
bbox_head = self.bbox_head[stage] | |
with torch.no_grad(): | |
results_list = bbox_head.refine_bboxes( | |
sampling_results, bbox_results, batch_img_metas) | |
# re-assign and sample 512 RoIs from 512 RoIs | |
sampling_results = [] | |
for i in range(num_imgs): | |
results = results_list[i] | |
# rename rpn_results.bboxes to rpn_results.priors | |
results.priors = results.pop('bboxes') | |
assign_result = bbox_assigner.assign( | |
results, batch_gt_instances[i], | |
batch_gt_instances_ignore[i]) | |
sampling_result = bbox_sampler.sample( | |
assign_result, | |
results, | |
batch_gt_instances[i], | |
feats=[lvl_feat[i][None] for lvl_feat in x]) | |
sampling_results.append(sampling_result) | |
mask_results = self.mask_loss( | |
stage=stage, | |
x=x, | |
sampling_results=sampling_results, | |
batch_gt_instances=batch_gt_instances, | |
semantic_feat=semantic_feat) | |
for name, value in mask_results['loss_mask'].items(): | |
losses[f's{stage}.{name}'] = ( | |
value * stage_loss_weight if 'loss' in name else value) | |
# refine bboxes (same as Cascade R-CNN) | |
if stage < self.num_stages - 1 and not self.interleaved: | |
bbox_head = self.bbox_head[stage] | |
with torch.no_grad(): | |
results_list = bbox_head.refine_bboxes( | |
sampling_results=sampling_results, | |
bbox_results=bbox_results, | |
batch_img_metas=batch_img_metas) | |
return losses | |
def predict(self, | |
x: Tuple[Tensor], | |
rpn_results_list: InstanceList, | |
batch_data_samples: SampleList, | |
rescale: bool = False) -> InstanceList: | |
"""Perform forward propagation of the roi head and predict detection | |
results on the features of the upstream network. | |
Args: | |
x (tuple[Tensor]): Features from upstream network. Each | |
has shape (N, C, H, W). | |
rpn_results_list (list[:obj:`InstanceData`]): list of region | |
proposals. | |
batch_data_samples (List[:obj:`DetDataSample`]): The Data | |
Samples. It usually includes information such as | |
`gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`. | |
rescale (bool): Whether to rescale the results to | |
the original image. Defaults to False. | |
Returns: | |
list[obj:`InstanceData`]: Detection results of each image. | |
Each item usually contains following keys. | |
- scores (Tensor): Classification scores, has a shape | |
(num_instance, ) | |
- labels (Tensor): Labels of bboxes, has a shape | |
(num_instances, ). | |
- bboxes (Tensor): Has a shape (num_instances, 4), | |
the last dimension 4 arrange as (x1, y1, x2, y2). | |
- masks (Tensor): Has a shape (num_instances, H, W). | |
""" | |
assert self.with_bbox, 'Bbox head must be implemented.' | |
batch_img_metas = [ | |
data_samples.metainfo for data_samples in batch_data_samples | |
] | |
if self.with_semantic: | |
_, semantic_feat = self.semantic_head(x) | |
else: | |
semantic_feat = None | |
# TODO: nms_op in mmcv need be enhanced, the bbox result may get | |
# difference when not rescale in bbox_head | |
# If it has the mask branch, the bbox branch does not need | |
# to be scaled to the original image scale, because the mask | |
# branch will scale both bbox and mask at the same time. | |
bbox_rescale = rescale if not self.with_mask else False | |
results_list = self.predict_bbox( | |
x=x, | |
semantic_feat=semantic_feat, | |
batch_img_metas=batch_img_metas, | |
rpn_results_list=rpn_results_list, | |
rcnn_test_cfg=self.test_cfg, | |
rescale=bbox_rescale) | |
if self.with_mask: | |
results_list = self.predict_mask( | |
x=x, | |
semantic_heat=semantic_feat, | |
batch_img_metas=batch_img_metas, | |
results_list=results_list, | |
rescale=rescale) | |
return results_list | |
def predict_mask(self, | |
x: Tuple[Tensor], | |
semantic_heat: Tensor, | |
batch_img_metas: List[dict], | |
results_list: InstanceList, | |
rescale: bool = False) -> InstanceList: | |
"""Perform forward propagation of the mask head and predict detection | |
results on the features of the upstream network. | |
Args: | |
x (tuple[Tensor]): Feature maps of all scale level. | |
semantic_feat (Tensor): Semantic feature. | |
batch_img_metas (list[dict]): List of image information. | |
results_list (list[:obj:`InstanceData`]): Detection results of | |
each image. | |
rescale (bool): If True, return boxes in original image space. | |
Defaults to False. | |
Returns: | |
list[:obj:`InstanceData`]: Detection results of each image | |
after the post process. | |
Each item usually contains following keys. | |
- scores (Tensor): Classification scores, has a shape | |
(num_instance, ) | |
- labels (Tensor): Labels of bboxes, has a shape | |
(num_instances, ). | |
- bboxes (Tensor): Has a shape (num_instances, 4), | |
the last dimension 4 arrange as (x1, y1, x2, y2). | |
- masks (Tensor): Has a shape (num_instances, H, W). | |
""" | |
num_imgs = len(batch_img_metas) | |
bboxes = [res.bboxes for res in results_list] | |
mask_rois = bbox2roi(bboxes) | |
if mask_rois.shape[0] == 0: | |
results_list = empty_instances( | |
batch_img_metas=batch_img_metas, | |
device=mask_rois.device, | |
task_type='mask', | |
instance_results=results_list, | |
mask_thr_binary=self.test_cfg.mask_thr_binary) | |
return results_list | |
num_mask_rois_per_img = [len(res) for res in results_list] | |
mask_results = self._mask_forward( | |
stage=-1, | |
x=x, | |
rois=mask_rois, | |
semantic_feat=semantic_heat, | |
training=False) | |
# split batch mask prediction back to each image | |
aug_masks = [[ | |
mask.sigmoid().detach() | |
for mask in mask_preds.split(num_mask_rois_per_img, 0) | |
] for mask_preds in mask_results['mask_preds']] | |
merged_masks = [] | |
for i in range(num_imgs): | |
aug_mask = [mask[i] for mask in aug_masks] | |
merged_mask = merge_aug_masks(aug_mask, batch_img_metas[i]) | |
merged_masks.append(merged_mask) | |
results_list = self.mask_head[-1].predict_by_feat( | |
mask_preds=merged_masks, | |
results_list=results_list, | |
batch_img_metas=batch_img_metas, | |
rcnn_test_cfg=self.test_cfg, | |
rescale=rescale, | |
activate_map=True) | |
return results_list | |
def forward(self, x: Tuple[Tensor], rpn_results_list: InstanceList, | |
batch_data_samples: SampleList) -> tuple: | |
"""Network forward process. Usually includes backbone, neck and head | |
forward without any post-processing. | |
Args: | |
x (List[Tensor]): Multi-level features that may have different | |
resolutions. | |
rpn_results_list (list[:obj:`InstanceData`]): List of region | |
proposals. | |
batch_data_samples (list[:obj:`DetDataSample`]): Each item contains | |
the meta information of each image and corresponding | |
annotations. | |
Returns | |
tuple: A tuple of features from ``bbox_head`` and ``mask_head`` | |
forward. | |
""" | |
results = () | |
batch_img_metas = [ | |
data_samples.metainfo for data_samples in batch_data_samples | |
] | |
num_imgs = len(batch_img_metas) | |
if self.with_semantic: | |
_, semantic_feat = self.semantic_head(x) | |
else: | |
semantic_feat = None | |
proposals = [rpn_results.bboxes for rpn_results in rpn_results_list] | |
num_proposals_per_img = tuple(len(p) for p in proposals) | |
rois = bbox2roi(proposals) | |
# bbox head | |
if self.with_bbox: | |
rois, cls_scores, bbox_preds = self._refine_roi( | |
x=x, | |
rois=rois, | |
semantic_feat=semantic_feat, | |
batch_img_metas=batch_img_metas, | |
num_proposals_per_img=num_proposals_per_img) | |
results = results + (cls_scores, bbox_preds) | |
# mask head | |
if self.with_mask: | |
rois = torch.cat(rois) | |
mask_results = self._mask_forward( | |
stage=-1, | |
x=x, | |
rois=rois, | |
semantic_feat=semantic_feat, | |
training=False) | |
aug_masks = [[ | |
mask.sigmoid().detach() | |
for mask in mask_preds.split(num_proposals_per_img, 0) | |
] for mask_preds in mask_results['mask_preds']] | |
merged_masks = [] | |
for i in range(num_imgs): | |
aug_mask = [mask[i] for mask in aug_masks] | |
merged_mask = merge_aug_masks(aug_mask, batch_img_metas[i]) | |
merged_masks.append(merged_mask) | |
results = results + (merged_masks, ) | |
return results | |