ai-photo-gallery / mmdet /models /roi_heads /dynamic_roi_head.py
KyanChen's picture
init
f549064
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Tuple
import numpy as np
import torch
from torch import Tensor
from mmdet.models.losses import SmoothL1Loss
from mmdet.models.task_modules.samplers import SamplingResult
from mmdet.registry import MODELS
from mmdet.structures import SampleList
from mmdet.structures.bbox import bbox2roi
from mmdet.utils import InstanceList
from ..utils.misc import unpack_gt_instances
from .standard_roi_head import StandardRoIHead
EPS = 1e-15
@MODELS.register_module()
class DynamicRoIHead(StandardRoIHead):
"""RoI head for `Dynamic R-CNN <https://arxiv.org/abs/2004.06002>`_."""
def __init__(self, **kwargs) -> None:
super().__init__(**kwargs)
assert isinstance(self.bbox_head.loss_bbox, SmoothL1Loss)
# the IoU history of the past `update_iter_interval` iterations
self.iou_history = []
# the beta history of the past `update_iter_interval` iterations
self.beta_history = []
def loss(self, x: Tuple[Tensor], rpn_results_list: InstanceList,
batch_data_samples: SampleList) -> dict:
"""Forward function for training.
Args:
x (tuple[Tensor]): List of multi-level img features.
rpn_results_list (list[:obj:`InstanceData`]): List of region
proposals.
batch_data_samples (list[:obj:`DetDataSample`]): The batch
data samples. It usually includes information such
as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`.
Returns:
dict[str, Tensor]: a dictionary of loss components
"""
assert len(rpn_results_list) == len(batch_data_samples)
outputs = unpack_gt_instances(batch_data_samples)
batch_gt_instances, batch_gt_instances_ignore, _ = outputs
# assign gts and sample proposals
num_imgs = len(batch_data_samples)
sampling_results = []
cur_iou = []
for i in range(num_imgs):
# rename rpn_results.bboxes to rpn_results.priors
rpn_results = rpn_results_list[i]
rpn_results.priors = rpn_results.pop('bboxes')
assign_result = self.bbox_assigner.assign(
rpn_results, batch_gt_instances[i],
batch_gt_instances_ignore[i])
sampling_result = self.bbox_sampler.sample(
assign_result,
rpn_results,
batch_gt_instances[i],
feats=[lvl_feat[i][None] for lvl_feat in x])
# record the `iou_topk`-th largest IoU in an image
iou_topk = min(self.train_cfg.dynamic_rcnn.iou_topk,
len(assign_result.max_overlaps))
ious, _ = torch.topk(assign_result.max_overlaps, iou_topk)
cur_iou.append(ious[-1].item())
sampling_results.append(sampling_result)
# average the current IoUs over images
cur_iou = np.mean(cur_iou)
self.iou_history.append(cur_iou)
losses = dict()
# bbox head forward and loss
if self.with_bbox:
bbox_results = self.bbox_loss(x, sampling_results)
losses.update(bbox_results['loss_bbox'])
# mask head forward and loss
if self.with_mask:
mask_results = self.mask_loss(x, sampling_results,
bbox_results['bbox_feats'],
batch_gt_instances)
losses.update(mask_results['loss_mask'])
# update IoU threshold and SmoothL1 beta
update_iter_interval = self.train_cfg.dynamic_rcnn.update_iter_interval
if len(self.iou_history) % update_iter_interval == 0:
new_iou_thr, new_beta = self.update_hyperparameters()
return losses
def bbox_loss(self, x: Tuple[Tensor],
sampling_results: List[SamplingResult]) -> dict:
"""Perform forward propagation and loss calculation of the bbox head on
the features of the upstream network.
Args:
x (tuple[Tensor]): List of multi-level img features.
sampling_results (list["obj:`SamplingResult`]): Sampling results.
Returns:
dict[str, Tensor]: Usually returns a dictionary with keys:
- `cls_score` (Tensor): Classification scores.
- `bbox_pred` (Tensor): Box energies / deltas.
- `bbox_feats` (Tensor): Extract bbox RoI features.
- `loss_bbox` (dict): A dictionary of bbox loss components.
"""
rois = bbox2roi([res.priors for res in sampling_results])
bbox_results = self._bbox_forward(x, rois)
bbox_loss_and_target = self.bbox_head.loss_and_target(
cls_score=bbox_results['cls_score'],
bbox_pred=bbox_results['bbox_pred'],
rois=rois,
sampling_results=sampling_results,
rcnn_train_cfg=self.train_cfg)
bbox_results.update(loss_bbox=bbox_loss_and_target['loss_bbox'])
# record the `beta_topk`-th smallest target
# `bbox_targets[2]` and `bbox_targets[3]` stand for bbox_targets
# and bbox_weights, respectively
bbox_targets = bbox_loss_and_target['bbox_targets']
pos_inds = bbox_targets[3][:, 0].nonzero().squeeze(1)
num_pos = len(pos_inds)
num_imgs = len(sampling_results)
if num_pos > 0:
cur_target = bbox_targets[2][pos_inds, :2].abs().mean(dim=1)
beta_topk = min(self.train_cfg.dynamic_rcnn.beta_topk * num_imgs,
num_pos)
cur_target = torch.kthvalue(cur_target, beta_topk)[0].item()
self.beta_history.append(cur_target)
return bbox_results
def update_hyperparameters(self):
"""Update hyperparameters like IoU thresholds for assigner and beta for
SmoothL1 loss based on the training statistics.
Returns:
tuple[float]: the updated ``iou_thr`` and ``beta``.
"""
new_iou_thr = max(self.train_cfg.dynamic_rcnn.initial_iou,
np.mean(self.iou_history))
self.iou_history = []
self.bbox_assigner.pos_iou_thr = new_iou_thr
self.bbox_assigner.neg_iou_thr = new_iou_thr
self.bbox_assigner.min_pos_iou = new_iou_thr
if (not self.beta_history) or (np.median(self.beta_history) < EPS):
# avoid 0 or too small value for new_beta
new_beta = self.bbox_head.loss_bbox.beta
else:
new_beta = min(self.train_cfg.dynamic_rcnn.initial_beta,
np.median(self.beta_history))
self.beta_history = []
self.bbox_head.loss_bbox.beta = new_beta
return new_iou_thr, new_beta