Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import List, Tuple | |
import numpy as np | |
import torch | |
from torch import Tensor | |
from mmdet.models.losses import SmoothL1Loss | |
from mmdet.models.task_modules.samplers import SamplingResult | |
from mmdet.registry import MODELS | |
from mmdet.structures import SampleList | |
from mmdet.structures.bbox import bbox2roi | |
from mmdet.utils import InstanceList | |
from ..utils.misc import unpack_gt_instances | |
from .standard_roi_head import StandardRoIHead | |
EPS = 1e-15 | |
class DynamicRoIHead(StandardRoIHead): | |
"""RoI head for `Dynamic R-CNN <https://arxiv.org/abs/2004.06002>`_.""" | |
def __init__(self, **kwargs) -> None: | |
super().__init__(**kwargs) | |
assert isinstance(self.bbox_head.loss_bbox, SmoothL1Loss) | |
# the IoU history of the past `update_iter_interval` iterations | |
self.iou_history = [] | |
# the beta history of the past `update_iter_interval` iterations | |
self.beta_history = [] | |
def loss(self, x: Tuple[Tensor], rpn_results_list: InstanceList, | |
batch_data_samples: SampleList) -> dict: | |
"""Forward function for training. | |
Args: | |
x (tuple[Tensor]): List of multi-level img features. | |
rpn_results_list (list[:obj:`InstanceData`]): List of region | |
proposals. | |
batch_data_samples (list[:obj:`DetDataSample`]): The batch | |
data samples. It usually includes information such | |
as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`. | |
Returns: | |
dict[str, Tensor]: a dictionary of loss components | |
""" | |
assert len(rpn_results_list) == len(batch_data_samples) | |
outputs = unpack_gt_instances(batch_data_samples) | |
batch_gt_instances, batch_gt_instances_ignore, _ = outputs | |
# assign gts and sample proposals | |
num_imgs = len(batch_data_samples) | |
sampling_results = [] | |
cur_iou = [] | |
for i in range(num_imgs): | |
# rename rpn_results.bboxes to rpn_results.priors | |
rpn_results = rpn_results_list[i] | |
rpn_results.priors = rpn_results.pop('bboxes') | |
assign_result = self.bbox_assigner.assign( | |
rpn_results, batch_gt_instances[i], | |
batch_gt_instances_ignore[i]) | |
sampling_result = self.bbox_sampler.sample( | |
assign_result, | |
rpn_results, | |
batch_gt_instances[i], | |
feats=[lvl_feat[i][None] for lvl_feat in x]) | |
# record the `iou_topk`-th largest IoU in an image | |
iou_topk = min(self.train_cfg.dynamic_rcnn.iou_topk, | |
len(assign_result.max_overlaps)) | |
ious, _ = torch.topk(assign_result.max_overlaps, iou_topk) | |
cur_iou.append(ious[-1].item()) | |
sampling_results.append(sampling_result) | |
# average the current IoUs over images | |
cur_iou = np.mean(cur_iou) | |
self.iou_history.append(cur_iou) | |
losses = dict() | |
# bbox head forward and loss | |
if self.with_bbox: | |
bbox_results = self.bbox_loss(x, sampling_results) | |
losses.update(bbox_results['loss_bbox']) | |
# mask head forward and loss | |
if self.with_mask: | |
mask_results = self.mask_loss(x, sampling_results, | |
bbox_results['bbox_feats'], | |
batch_gt_instances) | |
losses.update(mask_results['loss_mask']) | |
# update IoU threshold and SmoothL1 beta | |
update_iter_interval = self.train_cfg.dynamic_rcnn.update_iter_interval | |
if len(self.iou_history) % update_iter_interval == 0: | |
new_iou_thr, new_beta = self.update_hyperparameters() | |
return losses | |
def bbox_loss(self, x: Tuple[Tensor], | |
sampling_results: List[SamplingResult]) -> dict: | |
"""Perform forward propagation and loss calculation of the bbox head on | |
the features of the upstream network. | |
Args: | |
x (tuple[Tensor]): List of multi-level img features. | |
sampling_results (list["obj:`SamplingResult`]): Sampling results. | |
Returns: | |
dict[str, Tensor]: Usually returns a dictionary with keys: | |
- `cls_score` (Tensor): Classification scores. | |
- `bbox_pred` (Tensor): Box energies / deltas. | |
- `bbox_feats` (Tensor): Extract bbox RoI features. | |
- `loss_bbox` (dict): A dictionary of bbox loss components. | |
""" | |
rois = bbox2roi([res.priors for res in sampling_results]) | |
bbox_results = self._bbox_forward(x, rois) | |
bbox_loss_and_target = self.bbox_head.loss_and_target( | |
cls_score=bbox_results['cls_score'], | |
bbox_pred=bbox_results['bbox_pred'], | |
rois=rois, | |
sampling_results=sampling_results, | |
rcnn_train_cfg=self.train_cfg) | |
bbox_results.update(loss_bbox=bbox_loss_and_target['loss_bbox']) | |
# record the `beta_topk`-th smallest target | |
# `bbox_targets[2]` and `bbox_targets[3]` stand for bbox_targets | |
# and bbox_weights, respectively | |
bbox_targets = bbox_loss_and_target['bbox_targets'] | |
pos_inds = bbox_targets[3][:, 0].nonzero().squeeze(1) | |
num_pos = len(pos_inds) | |
num_imgs = len(sampling_results) | |
if num_pos > 0: | |
cur_target = bbox_targets[2][pos_inds, :2].abs().mean(dim=1) | |
beta_topk = min(self.train_cfg.dynamic_rcnn.beta_topk * num_imgs, | |
num_pos) | |
cur_target = torch.kthvalue(cur_target, beta_topk)[0].item() | |
self.beta_history.append(cur_target) | |
return bbox_results | |
def update_hyperparameters(self): | |
"""Update hyperparameters like IoU thresholds for assigner and beta for | |
SmoothL1 loss based on the training statistics. | |
Returns: | |
tuple[float]: the updated ``iou_thr`` and ``beta``. | |
""" | |
new_iou_thr = max(self.train_cfg.dynamic_rcnn.initial_iou, | |
np.mean(self.iou_history)) | |
self.iou_history = [] | |
self.bbox_assigner.pos_iou_thr = new_iou_thr | |
self.bbox_assigner.neg_iou_thr = new_iou_thr | |
self.bbox_assigner.min_pos_iou = new_iou_thr | |
if (not self.beta_history) or (np.median(self.beta_history) < EPS): | |
# avoid 0 or too small value for new_beta | |
new_beta = self.bbox_head.loss_bbox.beta | |
else: | |
new_beta = min(self.train_cfg.dynamic_rcnn.initial_beta, | |
np.median(self.beta_history)) | |
self.beta_history = [] | |
self.bbox_head.loss_bbox.beta = new_beta | |
return new_iou_thr, new_beta | |