KyanChen's picture
init
f549064
raw
history blame contribute delete
No virus
25.8 kB
# Copyright (c) OpenMMLab. All rights reserved.
import math
from typing import Dict, Tuple
import torch
import torch.nn.functional as F
from mmcv.cnn.bricks.transformer import MultiScaleDeformableAttention
from mmengine.model import xavier_init
from torch import Tensor, nn
from torch.nn.init import normal_
from mmdet.registry import MODELS
from mmdet.structures import OptSampleList
from mmdet.utils import OptConfigType
from ..layers import (DeformableDetrTransformerDecoder,
DeformableDetrTransformerEncoder, SinePositionalEncoding)
from .base_detr import DetectionTransformer
@MODELS.register_module()
class DeformableDETR(DetectionTransformer):
r"""Implementation of `Deformable DETR: Deformable Transformers for
End-to-End Object Detection <https://arxiv.org/abs/2010.04159>`_
Code is modified from the `official github repo
<https://github.com/fundamentalvision/Deformable-DETR>`_.
Args:
decoder (:obj:`ConfigDict` or dict, optional): Config of the
Transformer decoder. Defaults to None.
bbox_head (:obj:`ConfigDict` or dict, optional): Config for the
bounding box head module. Defaults to None.
with_box_refine (bool, optional): Whether to refine the references
in the decoder. Defaults to `False`.
as_two_stage (bool, optional): Whether to generate the proposal
from the outputs of encoder. Defaults to `False`.
num_feature_levels (int, optional): Number of feature levels.
Defaults to 4.
"""
def __init__(self,
*args,
decoder: OptConfigType = None,
bbox_head: OptConfigType = None,
with_box_refine: bool = False,
as_two_stage: bool = False,
num_feature_levels: int = 4,
**kwargs) -> None:
self.with_box_refine = with_box_refine
self.as_two_stage = as_two_stage
self.num_feature_levels = num_feature_levels
if bbox_head is not None:
assert 'share_pred_layer' not in bbox_head and \
'num_pred_layer' not in bbox_head and \
'as_two_stage' not in bbox_head, \
'The two keyword args `share_pred_layer`, `num_pred_layer`, ' \
'and `as_two_stage are set in `detector.__init__()`, users ' \
'should not set them in `bbox_head` config.'
# The last prediction layer is used to generate proposal
# from encode feature map when `as_two_stage` is `True`.
# And all the prediction layers should share parameters
# when `with_box_refine` is `True`.
bbox_head['share_pred_layer'] = not with_box_refine
bbox_head['num_pred_layer'] = (decoder['num_layers'] + 1) \
if self.as_two_stage else decoder['num_layers']
bbox_head['as_two_stage'] = as_two_stage
super().__init__(*args, decoder=decoder, bbox_head=bbox_head, **kwargs)
def _init_layers(self) -> None:
"""Initialize layers except for backbone, neck and bbox_head."""
self.positional_encoding = SinePositionalEncoding(
**self.positional_encoding)
self.encoder = DeformableDetrTransformerEncoder(**self.encoder)
self.decoder = DeformableDetrTransformerDecoder(**self.decoder)
self.embed_dims = self.encoder.embed_dims
if not self.as_two_stage:
self.query_embedding = nn.Embedding(self.num_queries,
self.embed_dims * 2)
# NOTE The query_embedding will be split into query and query_pos
# in self.pre_decoder, hence, the embed_dims are doubled.
num_feats = self.positional_encoding.num_feats
assert num_feats * 2 == self.embed_dims, \
'embed_dims should be exactly 2 times of num_feats. ' \
f'Found {self.embed_dims} and {num_feats}.'
self.level_embed = nn.Parameter(
torch.Tensor(self.num_feature_levels, self.embed_dims))
if self.as_two_stage:
self.memory_trans_fc = nn.Linear(self.embed_dims, self.embed_dims)
self.memory_trans_norm = nn.LayerNorm(self.embed_dims)
self.pos_trans_fc = nn.Linear(self.embed_dims * 2,
self.embed_dims * 2)
self.pos_trans_norm = nn.LayerNorm(self.embed_dims * 2)
else:
self.reference_points_fc = nn.Linear(self.embed_dims, 2)
def init_weights(self) -> None:
"""Initialize weights for Transformer and other components."""
super().init_weights()
for coder in self.encoder, self.decoder:
for p in coder.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
for m in self.modules():
if isinstance(m, MultiScaleDeformableAttention):
m.init_weights()
if self.as_two_stage:
nn.init.xavier_uniform_(self.memory_trans_fc.weight)
nn.init.xavier_uniform_(self.pos_trans_fc.weight)
else:
xavier_init(
self.reference_points_fc, distribution='uniform', bias=0.)
normal_(self.level_embed)
def pre_transformer(
self,
mlvl_feats: Tuple[Tensor],
batch_data_samples: OptSampleList = None) -> Tuple[Dict]:
"""Process image features before feeding them to the transformer.
The forward procedure of the transformer is defined as:
'pre_transformer' -> 'encoder' -> 'pre_decoder' -> 'decoder'
More details can be found at `TransformerDetector.forward_transformer`
in `mmdet/detector/base_detr.py`.
Args:
mlvl_feats (tuple[Tensor]): Multi-level features that may have
different resolutions, output from neck. Each feature has
shape (bs, dim, h_lvl, w_lvl), where 'lvl' means 'layer'.
batch_data_samples (list[:obj:`DetDataSample`], optional): The
batch data samples. It usually includes information such
as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`.
Defaults to None.
Returns:
tuple[dict]: The first dict contains the inputs of encoder and the
second dict contains the inputs of decoder.
- encoder_inputs_dict (dict): The keyword args dictionary of
`self.forward_encoder()`, which includes 'feat', 'feat_mask',
and 'feat_pos'.
- decoder_inputs_dict (dict): The keyword args dictionary of
`self.forward_decoder()`, which includes 'memory_mask'.
"""
batch_size = mlvl_feats[0].size(0)
# construct binary masks for the transformer.
assert batch_data_samples is not None
batch_input_shape = batch_data_samples[0].batch_input_shape
img_shape_list = [sample.img_shape for sample in batch_data_samples]
input_img_h, input_img_w = batch_input_shape
masks = mlvl_feats[0].new_ones((batch_size, input_img_h, input_img_w))
for img_id in range(batch_size):
img_h, img_w = img_shape_list[img_id]
masks[img_id, :img_h, :img_w] = 0
# NOTE following the official DETR repo, non-zero values representing
# ignored positions, while zero values means valid positions.
mlvl_masks = []
mlvl_pos_embeds = []
for feat in mlvl_feats:
mlvl_masks.append(
F.interpolate(masks[None],
size=feat.shape[-2:]).to(torch.bool).squeeze(0))
mlvl_pos_embeds.append(self.positional_encoding(mlvl_masks[-1]))
feat_flatten = []
lvl_pos_embed_flatten = []
mask_flatten = []
spatial_shapes = []
for lvl, (feat, mask, pos_embed) in enumerate(
zip(mlvl_feats, mlvl_masks, mlvl_pos_embeds)):
batch_size, c, h, w = feat.shape
# [bs, c, h_lvl, w_lvl] -> [bs, h_lvl*w_lvl, c]
feat = feat.view(batch_size, c, -1).permute(0, 2, 1)
pos_embed = pos_embed.view(batch_size, c, -1).permute(0, 2, 1)
lvl_pos_embed = pos_embed + self.level_embed[lvl].view(1, 1, -1)
# [bs, h_lvl, w_lvl] -> [bs, h_lvl*w_lvl]
mask = mask.flatten(1)
spatial_shape = (h, w)
feat_flatten.append(feat)
lvl_pos_embed_flatten.append(lvl_pos_embed)
mask_flatten.append(mask)
spatial_shapes.append(spatial_shape)
# (bs, num_feat_points, dim)
feat_flatten = torch.cat(feat_flatten, 1)
lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1)
# (bs, num_feat_points), where num_feat_points = sum_lvl(h_lvl*w_lvl)
mask_flatten = torch.cat(mask_flatten, 1)
spatial_shapes = torch.as_tensor( # (num_level, 2)
spatial_shapes,
dtype=torch.long,
device=feat_flatten.device)
level_start_index = torch.cat((
spatial_shapes.new_zeros((1, )), # (num_level)
spatial_shapes.prod(1).cumsum(0)[:-1]))
valid_ratios = torch.stack( # (bs, num_level, 2)
[self.get_valid_ratio(m) for m in mlvl_masks], 1)
encoder_inputs_dict = dict(
feat=feat_flatten,
feat_mask=mask_flatten,
feat_pos=lvl_pos_embed_flatten,
spatial_shapes=spatial_shapes,
level_start_index=level_start_index,
valid_ratios=valid_ratios)
decoder_inputs_dict = dict(
memory_mask=mask_flatten,
spatial_shapes=spatial_shapes,
level_start_index=level_start_index,
valid_ratios=valid_ratios)
return encoder_inputs_dict, decoder_inputs_dict
def forward_encoder(self, feat: Tensor, feat_mask: Tensor,
feat_pos: Tensor, spatial_shapes: Tensor,
level_start_index: Tensor,
valid_ratios: Tensor) -> Dict:
"""Forward with Transformer encoder.
The forward procedure of the transformer is defined as:
'pre_transformer' -> 'encoder' -> 'pre_decoder' -> 'decoder'
More details can be found at `TransformerDetector.forward_transformer`
in `mmdet/detector/base_detr.py`.
Args:
feat (Tensor): Sequential features, has shape (bs, num_feat_points,
dim).
feat_mask (Tensor): ByteTensor, the padding mask of the features,
has shape (bs, num_feat_points).
feat_pos (Tensor): The positional embeddings of the features, has
shape (bs, num_feat_points, dim).
spatial_shapes (Tensor): Spatial shapes of features in all levels,
has shape (num_levels, 2), last dimension represents (h, w).
level_start_index (Tensor): The start index of each level.
A tensor has shape (num_levels, ) and can be represented
as [0, h_0*w_0, h_0*w_0+h_1*w_1, ...].
valid_ratios (Tensor): The ratios of the valid width and the valid
height relative to the width and the height of features in all
levels, has shape (bs, num_levels, 2).
Returns:
dict: The dictionary of encoder outputs, which includes the
`memory` of the encoder output.
"""
memory = self.encoder(
query=feat,
query_pos=feat_pos,
key_padding_mask=feat_mask, # for self_attn
spatial_shapes=spatial_shapes,
level_start_index=level_start_index,
valid_ratios=valid_ratios)
encoder_outputs_dict = dict(
memory=memory,
memory_mask=feat_mask,
spatial_shapes=spatial_shapes)
return encoder_outputs_dict
def pre_decoder(self, memory: Tensor, memory_mask: Tensor,
spatial_shapes: Tensor) -> Tuple[Dict, Dict]:
"""Prepare intermediate variables before entering Transformer decoder,
such as `query`, `query_pos`, and `reference_points`.
The forward procedure of the transformer is defined as:
'pre_transformer' -> 'encoder' -> 'pre_decoder' -> 'decoder'
More details can be found at `TransformerDetector.forward_transformer`
in `mmdet/detector/base_detr.py`.
Args:
memory (Tensor): The output embeddings of the Transformer encoder,
has shape (bs, num_feat_points, dim).
memory_mask (Tensor): ByteTensor, the padding mask of the memory,
has shape (bs, num_feat_points). It will only be used when
`as_two_stage` is `True`.
spatial_shapes (Tensor): Spatial shapes of features in all levels,
has shape (num_levels, 2), last dimension represents (h, w).
It will only be used when `as_two_stage` is `True`.
Returns:
tuple[dict, dict]: The decoder_inputs_dict and head_inputs_dict.
- decoder_inputs_dict (dict): The keyword dictionary args of
`self.forward_decoder()`, which includes 'query', 'query_pos',
'memory', and `reference_points`. The reference_points of
decoder input here are 4D boxes when `as_two_stage` is `True`,
otherwise 2D points, although it has `points` in its name.
The reference_points in encoder is always 2D points.
- head_inputs_dict (dict): The keyword dictionary args of the
bbox_head functions, which includes `enc_outputs_class` and
`enc_outputs_coord`. They are both `None` when 'as_two_stage'
is `False`. The dict is empty when `self.training` is `False`.
"""
batch_size, _, c = memory.shape
if self.as_two_stage:
output_memory, output_proposals = \
self.gen_encoder_output_proposals(
memory, memory_mask, spatial_shapes)
enc_outputs_class = self.bbox_head.cls_branches[
self.decoder.num_layers](
output_memory)
enc_outputs_coord_unact = self.bbox_head.reg_branches[
self.decoder.num_layers](output_memory) + output_proposals
enc_outputs_coord = enc_outputs_coord_unact.sigmoid()
# We only use the first channel in enc_outputs_class as foreground,
# the other (num_classes - 1) channels are actually not used.
# Its targets are set to be 0s, which indicates the first
# class (foreground) because we use [0, num_classes - 1] to
# indicate class labels, background class is indicated by
# num_classes (similar convention in RPN).
# See https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/dense_heads/deformable_detr_head.py#L241 # noqa
# This follows the official implementation of Deformable DETR.
topk_proposals = torch.topk(
enc_outputs_class[..., 0], self.num_queries, dim=1)[1]
topk_coords_unact = torch.gather(
enc_outputs_coord_unact, 1,
topk_proposals.unsqueeze(-1).repeat(1, 1, 4))
topk_coords_unact = topk_coords_unact.detach()
reference_points = topk_coords_unact.sigmoid()
pos_trans_out = self.pos_trans_fc(
self.get_proposal_pos_embed(topk_coords_unact))
pos_trans_out = self.pos_trans_norm(pos_trans_out)
query_pos, query = torch.split(pos_trans_out, c, dim=2)
else:
enc_outputs_class, enc_outputs_coord = None, None
query_embed = self.query_embedding.weight
query_pos, query = torch.split(query_embed, c, dim=1)
query_pos = query_pos.unsqueeze(0).expand(batch_size, -1, -1)
query = query.unsqueeze(0).expand(batch_size, -1, -1)
reference_points = self.reference_points_fc(query_pos).sigmoid()
decoder_inputs_dict = dict(
query=query,
query_pos=query_pos,
memory=memory,
reference_points=reference_points)
head_inputs_dict = dict(
enc_outputs_class=enc_outputs_class,
enc_outputs_coord=enc_outputs_coord) if self.training else dict()
return decoder_inputs_dict, head_inputs_dict
def forward_decoder(self, query: Tensor, query_pos: Tensor, memory: Tensor,
memory_mask: Tensor, reference_points: Tensor,
spatial_shapes: Tensor, level_start_index: Tensor,
valid_ratios: Tensor) -> Dict:
"""Forward with Transformer decoder.
The forward procedure of the transformer is defined as:
'pre_transformer' -> 'encoder' -> 'pre_decoder' -> 'decoder'
More details can be found at `TransformerDetector.forward_transformer`
in `mmdet/detector/base_detr.py`.
Args:
query (Tensor): The queries of decoder inputs, has shape
(bs, num_queries, dim).
query_pos (Tensor): The positional queries of decoder inputs,
has shape (bs, num_queries, dim).
memory (Tensor): The output embeddings of the Transformer encoder,
has shape (bs, num_feat_points, dim).
memory_mask (Tensor): ByteTensor, the padding mask of the memory,
has shape (bs, num_feat_points).
reference_points (Tensor): The initial reference, has shape
(bs, num_queries, 4) with the last dimension arranged as
(cx, cy, w, h) when `as_two_stage` is `True`, otherwise has
shape (bs, num_queries, 2) with the last dimension arranged as
(cx, cy).
spatial_shapes (Tensor): Spatial shapes of features in all levels,
has shape (num_levels, 2), last dimension represents (h, w).
level_start_index (Tensor): The start index of each level.
A tensor has shape (num_levels, ) and can be represented
as [0, h_0*w_0, h_0*w_0+h_1*w_1, ...].
valid_ratios (Tensor): The ratios of the valid width and the valid
height relative to the width and the height of features in all
levels, has shape (bs, num_levels, 2).
Returns:
dict: The dictionary of decoder outputs, which includes the
`hidden_states` of the decoder output and `references` including
the initial and intermediate reference_points.
"""
inter_states, inter_references = self.decoder(
query=query,
value=memory,
query_pos=query_pos,
key_padding_mask=memory_mask, # for cross_attn
reference_points=reference_points,
spatial_shapes=spatial_shapes,
level_start_index=level_start_index,
valid_ratios=valid_ratios,
reg_branches=self.bbox_head.reg_branches
if self.with_box_refine else None)
references = [reference_points, *inter_references]
decoder_outputs_dict = dict(
hidden_states=inter_states, references=references)
return decoder_outputs_dict
@staticmethod
def get_valid_ratio(mask: Tensor) -> Tensor:
"""Get the valid radios of feature map in a level.
.. code:: text
|---> valid_W <---|
---+-----------------+-----+---
A | | | A
| | | | |
| | | | |
valid_H | | | |
| | | | H
| | | | |
V | | | |
---+-----------------+ | |
| | V
+-----------------------+---
|---------> W <---------|
The valid_ratios are defined as:
r_h = valid_H / H, r_w = valid_W / W
They are the factors to re-normalize the relative coordinates of the
image to the relative coordinates of the current level feature map.
Args:
mask (Tensor): Binary mask of a feature map, has shape (bs, H, W).
Returns:
Tensor: valid ratios [r_w, r_h] of a feature map, has shape (1, 2).
"""
_, H, W = mask.shape
valid_H = torch.sum(~mask[:, :, 0], 1)
valid_W = torch.sum(~mask[:, 0, :], 1)
valid_ratio_h = valid_H.float() / H
valid_ratio_w = valid_W.float() / W
valid_ratio = torch.stack([valid_ratio_w, valid_ratio_h], -1)
return valid_ratio
def gen_encoder_output_proposals(
self, memory: Tensor, memory_mask: Tensor,
spatial_shapes: Tensor) -> Tuple[Tensor, Tensor]:
"""Generate proposals from encoded memory. The function will only be
used when `as_two_stage` is `True`.
Args:
memory (Tensor): The output embeddings of the Transformer encoder,
has shape (bs, num_feat_points, dim).
memory_mask (Tensor): ByteTensor, the padding mask of the memory,
has shape (bs, num_feat_points).
spatial_shapes (Tensor): Spatial shapes of features in all levels,
has shape (num_levels, 2), last dimension represents (h, w).
Returns:
tuple: A tuple of transformed memory and proposals.
- output_memory (Tensor): The transformed memory for obtaining
top-k proposals, has shape (bs, num_feat_points, dim).
- output_proposals (Tensor): The inverse-normalized proposal, has
shape (batch_size, num_keys, 4) with the last dimension arranged
as (cx, cy, w, h).
"""
bs = memory.size(0)
proposals = []
_cur = 0 # start index in the sequence of the current level
for lvl, (H, W) in enumerate(spatial_shapes):
mask_flatten_ = memory_mask[:,
_cur:(_cur + H * W)].view(bs, H, W, 1)
valid_H = torch.sum(~mask_flatten_[:, :, 0, 0], 1).unsqueeze(-1)
valid_W = torch.sum(~mask_flatten_[:, 0, :, 0], 1).unsqueeze(-1)
grid_y, grid_x = torch.meshgrid(
torch.linspace(
0, H - 1, H, dtype=torch.float32, device=memory.device),
torch.linspace(
0, W - 1, W, dtype=torch.float32, device=memory.device))
grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1)
scale = torch.cat([valid_W, valid_H], 1).view(bs, 1, 1, 2)
grid = (grid.unsqueeze(0).expand(bs, -1, -1, -1) + 0.5) / scale
wh = torch.ones_like(grid) * 0.05 * (2.0**lvl)
proposal = torch.cat((grid, wh), -1).view(bs, -1, 4)
proposals.append(proposal)
_cur += (H * W)
output_proposals = torch.cat(proposals, 1)
output_proposals_valid = ((output_proposals > 0.01) &
(output_proposals < 0.99)).all(
-1, keepdim=True)
# inverse_sigmoid
output_proposals = torch.log(output_proposals / (1 - output_proposals))
output_proposals = output_proposals.masked_fill(
memory_mask.unsqueeze(-1), float('inf'))
output_proposals = output_proposals.masked_fill(
~output_proposals_valid, float('inf'))
output_memory = memory
output_memory = output_memory.masked_fill(
memory_mask.unsqueeze(-1), float(0))
output_memory = output_memory.masked_fill(~output_proposals_valid,
float(0))
output_memory = self.memory_trans_fc(output_memory)
output_memory = self.memory_trans_norm(output_memory)
# [bs, sum(hw), 2]
return output_memory, output_proposals
@staticmethod
def get_proposal_pos_embed(proposals: Tensor,
num_pos_feats: int = 128,
temperature: int = 10000) -> Tensor:
"""Get the position embedding of the proposal.
Args:
proposals (Tensor): Not normalized proposals, has shape
(bs, num_queries, 4) with the last dimension arranged as
(cx, cy, w, h).
num_pos_feats (int, optional): The feature dimension for each
position along x, y, w, and h-axis. Note the final returned
dimension for each position is 4 times of num_pos_feats.
Default to 128.
temperature (int, optional): The temperature used for scaling the
position embedding. Defaults to 10000.
Returns:
Tensor: The position embedding of proposal, has shape
(bs, num_queries, num_pos_feats * 4), with the last dimension
arranged as (cx, cy, w, h)
"""
scale = 2 * math.pi
dim_t = torch.arange(
num_pos_feats, dtype=torch.float32, device=proposals.device)
dim_t = temperature**(2 * (dim_t // 2) / num_pos_feats)
# N, L, 4
proposals = proposals.sigmoid() * scale
# N, L, 4, 128
pos = proposals[:, :, :, None] / dim_t
# N, L, 4, 64, 2
pos = torch.stack((pos[:, :, :, 0::2].sin(), pos[:, :, :, 1::2].cos()),
dim=4).flatten(2)
return pos