Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import warnings | |
from typing import List, Optional, Tuple, Union | |
import torch | |
import torch.nn as nn | |
from mmengine.structures import InstanceData | |
from torch import Tensor | |
from mmdet.registry import MODELS, TASK_UTILS | |
from mmdet.structures.bbox import BaseBoxes, cat_boxes, get_box_tensor | |
from mmdet.utils import (ConfigType, InstanceList, OptConfigType, | |
OptInstanceList, OptMultiConfig) | |
from ..task_modules.prior_generators import (AnchorGenerator, | |
anchor_inside_flags) | |
from ..task_modules.samplers import PseudoSampler | |
from ..utils import images_to_levels, multi_apply, unmap | |
from .base_dense_head import BaseDenseHead | |
class AnchorHead(BaseDenseHead): | |
"""Anchor-based head (RPN, RetinaNet, SSD, etc.). | |
Args: | |
num_classes (int): Number of categories excluding the background | |
category. | |
in_channels (int): Number of channels in the input feature map. | |
feat_channels (int): Number of hidden channels. Used in child classes. | |
anchor_generator (dict): Config dict for anchor generator | |
bbox_coder (dict): Config of bounding box coder. | |
reg_decoded_bbox (bool): If true, the regression loss would be | |
applied directly on decoded bounding boxes, converting both | |
the predicted boxes and regression targets to absolute | |
coordinates format. Default False. It should be `True` when | |
using `IoULoss`, `GIoULoss`, or `DIoULoss` in the bbox head. | |
loss_cls (dict): Config of classification loss. | |
loss_bbox (dict): Config of localization loss. | |
train_cfg (dict): Training config of anchor head. | |
test_cfg (dict): Testing config of anchor head. | |
init_cfg (dict or list[dict], optional): Initialization config dict. | |
""" # noqa: W605 | |
def __init__( | |
self, | |
num_classes: int, | |
in_channels: int, | |
feat_channels: int = 256, | |
anchor_generator: ConfigType = dict( | |
type='AnchorGenerator', | |
scales=[8, 16, 32], | |
ratios=[0.5, 1.0, 2.0], | |
strides=[4, 8, 16, 32, 64]), | |
bbox_coder: ConfigType = dict( | |
type='DeltaXYWHBBoxCoder', | |
clip_border=True, | |
target_means=(.0, .0, .0, .0), | |
target_stds=(1.0, 1.0, 1.0, 1.0)), | |
reg_decoded_bbox: bool = False, | |
loss_cls: ConfigType = dict( | |
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), | |
loss_bbox: ConfigType = dict( | |
type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0), | |
train_cfg: OptConfigType = None, | |
test_cfg: OptConfigType = None, | |
init_cfg: OptMultiConfig = dict( | |
type='Normal', layer='Conv2d', std=0.01) | |
) -> None: | |
super().__init__(init_cfg=init_cfg) | |
self.in_channels = in_channels | |
self.num_classes = num_classes | |
self.feat_channels = feat_channels | |
self.use_sigmoid_cls = loss_cls.get('use_sigmoid', False) | |
if self.use_sigmoid_cls: | |
self.cls_out_channels = num_classes | |
else: | |
self.cls_out_channels = num_classes + 1 | |
if self.cls_out_channels <= 0: | |
raise ValueError(f'num_classes={num_classes} is too small') | |
self.reg_decoded_bbox = reg_decoded_bbox | |
self.bbox_coder = TASK_UTILS.build(bbox_coder) | |
self.loss_cls = MODELS.build(loss_cls) | |
self.loss_bbox = MODELS.build(loss_bbox) | |
self.train_cfg = train_cfg | |
self.test_cfg = test_cfg | |
if self.train_cfg: | |
self.assigner = TASK_UTILS.build(self.train_cfg['assigner']) | |
if train_cfg.get('sampler', None) is not None: | |
self.sampler = TASK_UTILS.build( | |
self.train_cfg['sampler'], default_args=dict(context=self)) | |
else: | |
self.sampler = PseudoSampler(context=self) | |
self.fp16_enabled = False | |
self.prior_generator = TASK_UTILS.build(anchor_generator) | |
# Usually the numbers of anchors for each level are the same | |
# except SSD detectors. So it is an int in the most dense | |
# heads but a list of int in SSDHead | |
self.num_base_priors = self.prior_generator.num_base_priors[0] | |
self._init_layers() | |
def num_anchors(self) -> int: | |
warnings.warn('DeprecationWarning: `num_anchors` is deprecated, ' | |
'for consistency or also use ' | |
'`num_base_priors` instead') | |
return self.prior_generator.num_base_priors[0] | |
def anchor_generator(self) -> AnchorGenerator: | |
warnings.warn('DeprecationWarning: anchor_generator is deprecated, ' | |
'please use "prior_generator" instead') | |
return self.prior_generator | |
def _init_layers(self) -> None: | |
"""Initialize layers of the head.""" | |
self.conv_cls = nn.Conv2d(self.in_channels, | |
self.num_base_priors * self.cls_out_channels, | |
1) | |
reg_dim = self.bbox_coder.encode_size | |
self.conv_reg = nn.Conv2d(self.in_channels, | |
self.num_base_priors * reg_dim, 1) | |
def forward_single(self, x: Tensor) -> Tuple[Tensor, Tensor]: | |
"""Forward feature of a single scale level. | |
Args: | |
x (Tensor): Features of a single scale level. | |
Returns: | |
tuple: | |
cls_score (Tensor): Cls scores for a single scale level \ | |
the channels number is num_base_priors * num_classes. | |
bbox_pred (Tensor): Box energies / deltas for a single scale \ | |
level, the channels number is num_base_priors * 4. | |
""" | |
cls_score = self.conv_cls(x) | |
bbox_pred = self.conv_reg(x) | |
return cls_score, bbox_pred | |
def forward(self, x: Tuple[Tensor]) -> Tuple[List[Tensor]]: | |
"""Forward features from the upstream network. | |
Args: | |
x (tuple[Tensor]): Features from the upstream network, each is | |
a 4D-tensor. | |
Returns: | |
tuple: A tuple of classification scores and bbox prediction. | |
- cls_scores (list[Tensor]): Classification scores for all \ | |
scale levels, each is a 4D-tensor, the channels number \ | |
is num_base_priors * num_classes. | |
- bbox_preds (list[Tensor]): Box energies / deltas for all \ | |
scale levels, each is a 4D-tensor, the channels number \ | |
is num_base_priors * 4. | |
""" | |
return multi_apply(self.forward_single, x) | |
def get_anchors(self, | |
featmap_sizes: List[tuple], | |
batch_img_metas: List[dict], | |
device: Union[torch.device, str] = 'cuda') \ | |
-> Tuple[List[List[Tensor]], List[List[Tensor]]]: | |
"""Get anchors according to feature map sizes. | |
Args: | |
featmap_sizes (list[tuple]): Multi-level feature map sizes. | |
batch_img_metas (list[dict]): Image meta info. | |
device (torch.device | str): Device for returned tensors. | |
Defaults to cuda. | |
Returns: | |
tuple: | |
- anchor_list (list[list[Tensor]]): Anchors of each image. | |
- valid_flag_list (list[list[Tensor]]): Valid flags of each | |
image. | |
""" | |
num_imgs = len(batch_img_metas) | |
# since feature map sizes of all images are the same, we only compute | |
# anchors for one time | |
multi_level_anchors = self.prior_generator.grid_priors( | |
featmap_sizes, device=device) | |
anchor_list = [multi_level_anchors for _ in range(num_imgs)] | |
# for each image, we compute valid flags of multi level anchors | |
valid_flag_list = [] | |
for img_id, img_meta in enumerate(batch_img_metas): | |
multi_level_flags = self.prior_generator.valid_flags( | |
featmap_sizes, img_meta['pad_shape'], device) | |
valid_flag_list.append(multi_level_flags) | |
return anchor_list, valid_flag_list | |
def _get_targets_single(self, | |
flat_anchors: Union[Tensor, BaseBoxes], | |
valid_flags: Tensor, | |
gt_instances: InstanceData, | |
img_meta: dict, | |
gt_instances_ignore: Optional[InstanceData] = None, | |
unmap_outputs: bool = True) -> tuple: | |
"""Compute regression and classification targets for anchors in a | |
single image. | |
Args: | |
flat_anchors (Tensor or :obj:`BaseBoxes`): Multi-level anchors | |
of the image, which are concatenated into a single tensor | |
or box type of shape (num_anchors, 4) | |
valid_flags (Tensor): Multi level valid flags of the image, | |
which are concatenated into a single tensor of | |
shape (num_anchors, ). | |
gt_instances (:obj:`InstanceData`): Ground truth of instance | |
annotations. It should includes ``bboxes`` and ``labels`` | |
attributes. | |
img_meta (dict): Meta information for current image. | |
gt_instances_ignore (:obj:`InstanceData`, optional): Instances | |
to be ignored during training. It includes ``bboxes`` attribute | |
data that is ignored during training and testing. | |
Defaults to None. | |
unmap_outputs (bool): Whether to map outputs back to the original | |
set of anchors. Defaults to True. | |
Returns: | |
tuple: | |
- labels (Tensor): Labels of each level. | |
- label_weights (Tensor): Label weights of each level. | |
- bbox_targets (Tensor): BBox targets of each level. | |
- bbox_weights (Tensor): BBox weights of each level. | |
- pos_inds (Tensor): positive samples indexes. | |
- neg_inds (Tensor): negative samples indexes. | |
- sampling_result (:obj:`SamplingResult`): Sampling results. | |
""" | |
inside_flags = anchor_inside_flags(flat_anchors, valid_flags, | |
img_meta['img_shape'][:2], | |
self.train_cfg['allowed_border']) | |
if not inside_flags.any(): | |
raise ValueError( | |
'There is no valid anchor inside the image boundary. Please ' | |
'check the image size and anchor sizes, or set ' | |
'``allowed_border`` to -1 to skip the condition.') | |
# assign gt and sample anchors | |
anchors = flat_anchors[inside_flags] | |
pred_instances = InstanceData(priors=anchors) | |
assign_result = self.assigner.assign(pred_instances, gt_instances, | |
gt_instances_ignore) | |
# No sampling is required except for RPN and | |
# Guided Anchoring algorithms | |
sampling_result = self.sampler.sample(assign_result, pred_instances, | |
gt_instances) | |
num_valid_anchors = anchors.shape[0] | |
target_dim = gt_instances.bboxes.size(-1) if self.reg_decoded_bbox \ | |
else self.bbox_coder.encode_size | |
bbox_targets = anchors.new_zeros(num_valid_anchors, target_dim) | |
bbox_weights = anchors.new_zeros(num_valid_anchors, target_dim) | |
# TODO: Considering saving memory, is it necessary to be long? | |
labels = anchors.new_full((num_valid_anchors, ), | |
self.num_classes, | |
dtype=torch.long) | |
label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float) | |
pos_inds = sampling_result.pos_inds | |
neg_inds = sampling_result.neg_inds | |
# `bbox_coder.encode` accepts tensor or box type inputs and generates | |
# tensor targets. If regressing decoded boxes, the code will convert | |
# box type `pos_bbox_targets` to tensor. | |
if len(pos_inds) > 0: | |
if not self.reg_decoded_bbox: | |
pos_bbox_targets = self.bbox_coder.encode( | |
sampling_result.pos_priors, sampling_result.pos_gt_bboxes) | |
else: | |
pos_bbox_targets = sampling_result.pos_gt_bboxes | |
pos_bbox_targets = get_box_tensor(pos_bbox_targets) | |
bbox_targets[pos_inds, :] = pos_bbox_targets | |
bbox_weights[pos_inds, :] = 1.0 | |
labels[pos_inds] = sampling_result.pos_gt_labels | |
if self.train_cfg['pos_weight'] <= 0: | |
label_weights[pos_inds] = 1.0 | |
else: | |
label_weights[pos_inds] = self.train_cfg['pos_weight'] | |
if len(neg_inds) > 0: | |
label_weights[neg_inds] = 1.0 | |
# map up to original set of anchors | |
if unmap_outputs: | |
num_total_anchors = flat_anchors.size(0) | |
labels = unmap( | |
labels, num_total_anchors, inside_flags, | |
fill=self.num_classes) # fill bg label | |
label_weights = unmap(label_weights, num_total_anchors, | |
inside_flags) | |
bbox_targets = unmap(bbox_targets, num_total_anchors, inside_flags) | |
bbox_weights = unmap(bbox_weights, num_total_anchors, inside_flags) | |
return (labels, label_weights, bbox_targets, bbox_weights, pos_inds, | |
neg_inds, sampling_result) | |
def get_targets(self, | |
anchor_list: List[List[Tensor]], | |
valid_flag_list: List[List[Tensor]], | |
batch_gt_instances: InstanceList, | |
batch_img_metas: List[dict], | |
batch_gt_instances_ignore: OptInstanceList = None, | |
unmap_outputs: bool = True, | |
return_sampling_results: bool = False) -> tuple: | |
"""Compute regression and classification targets for anchors in | |
multiple images. | |
Args: | |
anchor_list (list[list[Tensor]]): Multi level anchors of each | |
image. The outer list indicates images, and the inner list | |
corresponds to feature levels of the image. Each element of | |
the inner list is a tensor of shape (num_anchors, 4). | |
valid_flag_list (list[list[Tensor]]): Multi level valid flags of | |
each image. The outer list indicates images, and the inner list | |
corresponds to feature levels of the image. Each element of | |
the inner list is a tensor of shape (num_anchors, ) | |
batch_gt_instances (list[:obj:`InstanceData`]): Batch of | |
gt_instance. It usually includes ``bboxes`` and ``labels`` | |
attributes. | |
batch_img_metas (list[dict]): Meta information of each image, e.g., | |
image size, scaling factor, etc. | |
batch_gt_instances_ignore (list[:obj:`InstanceData`], optional): | |
Batch of gt_instances_ignore. It includes ``bboxes`` attribute | |
data that is ignored during training and testing. | |
Defaults to None. | |
unmap_outputs (bool): Whether to map outputs back to the original | |
set of anchors. Defaults to True. | |
return_sampling_results (bool): Whether to return the sampling | |
results. Defaults to False. | |
Returns: | |
tuple: Usually returns a tuple containing learning targets. | |
- labels_list (list[Tensor]): Labels of each level. | |
- label_weights_list (list[Tensor]): Label weights of each | |
level. | |
- bbox_targets_list (list[Tensor]): BBox targets of each level. | |
- bbox_weights_list (list[Tensor]): BBox weights of each level. | |
- avg_factor (int): Average factor that is used to average | |
the loss. When using sampling method, avg_factor is usually | |
the sum of positive and negative priors. When using | |
`PseudoSampler`, `avg_factor` is usually equal to the number | |
of positive priors. | |
additional_returns: This function enables user-defined returns from | |
`self._get_targets_single`. These returns are currently refined | |
to properties at each feature map (i.e. having HxW dimension). | |
The results will be concatenated after the end | |
""" | |
num_imgs = len(batch_img_metas) | |
assert len(anchor_list) == len(valid_flag_list) == num_imgs | |
if batch_gt_instances_ignore is None: | |
batch_gt_instances_ignore = [None] * num_imgs | |
# anchor number of multi levels | |
num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]] | |
# concat all level anchors to a single tensor | |
concat_anchor_list = [] | |
concat_valid_flag_list = [] | |
for i in range(num_imgs): | |
assert len(anchor_list[i]) == len(valid_flag_list[i]) | |
concat_anchor_list.append(cat_boxes(anchor_list[i])) | |
concat_valid_flag_list.append(torch.cat(valid_flag_list[i])) | |
# compute targets for each image | |
results = multi_apply( | |
self._get_targets_single, | |
concat_anchor_list, | |
concat_valid_flag_list, | |
batch_gt_instances, | |
batch_img_metas, | |
batch_gt_instances_ignore, | |
unmap_outputs=unmap_outputs) | |
(all_labels, all_label_weights, all_bbox_targets, all_bbox_weights, | |
pos_inds_list, neg_inds_list, sampling_results_list) = results[:7] | |
rest_results = list(results[7:]) # user-added return values | |
# Get `avg_factor` of all images, which calculate in `SamplingResult`. | |
# When using sampling method, avg_factor is usually the sum of | |
# positive and negative priors. When using `PseudoSampler`, | |
# `avg_factor` is usually equal to the number of positive priors. | |
avg_factor = sum( | |
[results.avg_factor for results in sampling_results_list]) | |
# update `_raw_positive_infos`, which will be used when calling | |
# `get_positive_infos`. | |
self._raw_positive_infos.update(sampling_results=sampling_results_list) | |
# split targets to a list w.r.t. multiple levels | |
labels_list = images_to_levels(all_labels, num_level_anchors) | |
label_weights_list = images_to_levels(all_label_weights, | |
num_level_anchors) | |
bbox_targets_list = images_to_levels(all_bbox_targets, | |
num_level_anchors) | |
bbox_weights_list = images_to_levels(all_bbox_weights, | |
num_level_anchors) | |
res = (labels_list, label_weights_list, bbox_targets_list, | |
bbox_weights_list, avg_factor) | |
if return_sampling_results: | |
res = res + (sampling_results_list, ) | |
for i, r in enumerate(rest_results): # user-added return values | |
rest_results[i] = images_to_levels(r, num_level_anchors) | |
return res + tuple(rest_results) | |
def loss_by_feat_single(self, cls_score: Tensor, bbox_pred: Tensor, | |
anchors: Tensor, labels: Tensor, | |
label_weights: Tensor, bbox_targets: Tensor, | |
bbox_weights: Tensor, avg_factor: int) -> tuple: | |
"""Calculate the loss of a single scale level based on the features | |
extracted by the detection head. | |
Args: | |
cls_score (Tensor): Box scores for each scale level | |
Has shape (N, num_anchors * num_classes, H, W). | |
bbox_pred (Tensor): Box energies / deltas for each scale | |
level with shape (N, num_anchors * 4, H, W). | |
anchors (Tensor): Box reference for each scale level with shape | |
(N, num_total_anchors, 4). | |
labels (Tensor): Labels of each anchors with shape | |
(N, num_total_anchors). | |
label_weights (Tensor): Label weights of each anchor with shape | |
(N, num_total_anchors) | |
bbox_targets (Tensor): BBox regression targets of each anchor | |
weight shape (N, num_total_anchors, 4). | |
bbox_weights (Tensor): BBox regression loss weights of each anchor | |
with shape (N, num_total_anchors, 4). | |
avg_factor (int): Average factor that is used to average the loss. | |
Returns: | |
tuple: loss components. | |
""" | |
# classification loss | |
labels = labels.reshape(-1) | |
label_weights = label_weights.reshape(-1) | |
cls_score = cls_score.permute(0, 2, 3, | |
1).reshape(-1, self.cls_out_channels) | |
loss_cls = self.loss_cls( | |
cls_score, labels, label_weights, avg_factor=avg_factor) | |
# regression loss | |
target_dim = bbox_targets.size(-1) | |
bbox_targets = bbox_targets.reshape(-1, target_dim) | |
bbox_weights = bbox_weights.reshape(-1, target_dim) | |
bbox_pred = bbox_pred.permute(0, 2, 3, | |
1).reshape(-1, | |
self.bbox_coder.encode_size) | |
if self.reg_decoded_bbox: | |
# When the regression loss (e.g. `IouLoss`, `GIouLoss`) | |
# is applied directly on the decoded bounding boxes, it | |
# decodes the already encoded coordinates to absolute format. | |
anchors = anchors.reshape(-1, anchors.size(-1)) | |
bbox_pred = self.bbox_coder.decode(anchors, bbox_pred) | |
bbox_pred = get_box_tensor(bbox_pred) | |
loss_bbox = self.loss_bbox( | |
bbox_pred, bbox_targets, bbox_weights, avg_factor=avg_factor) | |
return loss_cls, loss_bbox | |
def loss_by_feat( | |
self, | |
cls_scores: List[Tensor], | |
bbox_preds: List[Tensor], | |
batch_gt_instances: InstanceList, | |
batch_img_metas: List[dict], | |
batch_gt_instances_ignore: OptInstanceList = None) -> dict: | |
"""Calculate the loss based on the features extracted by the detection | |
head. | |
Args: | |
cls_scores (list[Tensor]): Box scores for each scale level | |
has shape (N, num_anchors * num_classes, H, W). | |
bbox_preds (list[Tensor]): Box energies / deltas for each scale | |
level with shape (N, num_anchors * 4, H, W). | |
batch_gt_instances (list[:obj:`InstanceData`]): Batch of | |
gt_instance. It usually includes ``bboxes`` and ``labels`` | |
attributes. | |
batch_img_metas (list[dict]): Meta information of each image, e.g., | |
image size, scaling factor, etc. | |
batch_gt_instances_ignore (list[:obj:`InstanceData`], optional): | |
Batch of gt_instances_ignore. It includes ``bboxes`` attribute | |
data that is ignored during training and testing. | |
Defaults to None. | |
Returns: | |
dict: A dictionary of loss components. | |
""" | |
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] | |
assert len(featmap_sizes) == self.prior_generator.num_levels | |
device = cls_scores[0].device | |
anchor_list, valid_flag_list = self.get_anchors( | |
featmap_sizes, batch_img_metas, device=device) | |
cls_reg_targets = self.get_targets( | |
anchor_list, | |
valid_flag_list, | |
batch_gt_instances, | |
batch_img_metas, | |
batch_gt_instances_ignore=batch_gt_instances_ignore) | |
(labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, | |
avg_factor) = cls_reg_targets | |
# anchor number of multi levels | |
num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]] | |
# concat all level anchors and flags to a single tensor | |
concat_anchor_list = [] | |
for i in range(len(anchor_list)): | |
concat_anchor_list.append(cat_boxes(anchor_list[i])) | |
all_anchor_list = images_to_levels(concat_anchor_list, | |
num_level_anchors) | |
losses_cls, losses_bbox = multi_apply( | |
self.loss_by_feat_single, | |
cls_scores, | |
bbox_preds, | |
all_anchor_list, | |
labels_list, | |
label_weights_list, | |
bbox_targets_list, | |
bbox_weights_list, | |
avg_factor=avg_factor) | |
return dict(loss_cls=losses_cls, loss_bbox=losses_bbox) | |